IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v439y2015icp85-92.html
   My bibliography  Save this article

Preferential attachment in randomly grown networks

Author

Listed:
  • Weaver, Iain S.

Abstract

We reintroduce the model of Callaway et al. (2001) as a special case of a more general model for random network growth. Vertices are added to the graph at a rate of 1, while edges are introduced at rate δ. Rather than edges being introduced at random, we allow for a degree of preferential attachment with a linear attachment kernel, parametrised by m. The original model is recovered in the limit of no preferential attachment, m→∞. As expected, even weak preferential attachment introduces a power-law tail to the degree distribution. Additionally, this generalisation retains a great deal of the tractability of the original along with a surprising range of behaviour, although key mathematical features are modified for finite m. In particular, the critical edge density, δc which marks the onset of a giant network component is reduced with increasing tendency for preferential attachment. The positive degree–degree correlation introduced by the unbiased growth process is offset by the skewed degree distribution, reducing the network assortativity.

Suggested Citation

  • Weaver, Iain S., 2015. "Preferential attachment in randomly grown networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 85-92.
  • Handle: RePEc:eee:phsmap:v:439:y:2015:i:c:p:85-92
    DOI: 10.1016/j.physa.2015.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005725
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. S. Callaway & J. E. Hopcroft & J. M. Kleinberg & M. E. J. Newman & S. H. Strogatz, 2001. "Are Randomly Grown Graphs Really Random?," Working Papers 01-05-025, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Yang & Tingting Liu & Xiaohong Chen & Yiyang Bian & Yuewen Liu, 2020. "HNRWalker: recommending academic collaborators with dynamic transition probabilities in heterogeneous networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 429-449, April.
    2. Gafarov, F.M., 2016. "Emergence of the small-world architecture in neural networks by activity dependent growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 409-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    2. Haizheng Zhang & Baojun Qiu & Kristinka Ivanova & C. Lee Giles & Henry C. Foley & John Yen, 2010. "Locality and attachedness‐based temporal social network growth dynamics analysis: A case study of evolving nanotechnology scientific collaboration networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 964-977, May.
    3. Chris Fields, 2015. "How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1287-1306, February.
    4. Zhou, Li-xin & Lin, Jie & Wang, Yu-qing & Li, Yan-feng & Miao, Run-sheng, 2018. "Critical phenomena of spreading dynamics on complex networks with diverse activity of nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 439-447.
    5. Oh, S.M. & Son, S.-W. & Kahng, B., 2021. "Percolation transitions in growing networks under achlioptas processes: Analytic solutions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
    7. Yang Zhang & Ying-Ju Chen, 2020. "Optimal Nonlinear Pricing in Social Networks Under Asymmetric Network Information," Operations Research, INFORMS, vol. 68(3), pages 818-833, May.
    8. Reppas, Andreas I. & Spiliotis, Konstantinos & Siettos, Constantinos I., 2015. "Tuning the average path length of complex networks and its influence to the emergent dynamics of the majority-rule model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 186-196.
    9. Inoue, Masaaki & Pham, Thong & Shimodaira, Hidetoshi, 2020. "Joint estimation of non-parametric transitivity and preferential attachment functions in scientific co-authorship networks," Journal of Informetrics, Elsevier, vol. 14(3).
    10. Sabek, M. & Pigorsch, U., 2023. "Local assortativity in weighted and directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Konno, Tomohiko, 2009. "Network structure of Japanese firms. Scale-free, hierarchy, and degree correlation: analysis from 800,000 firms," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-13.
    12. Brot, Hilla & Muchnik, Lev & Goldenberg, Jacob & Louzoun, Yoram, 2012. "Feedback between node and network dynamics can produce real-world network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6645-6654.
    13. Swami Iyer & Timothy Killingback, 2016. "Evolution of Cooperation in Social Dilemmas on Complex Networks," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-25, February.
    14. Small, Henry, 2009. "Critical thresholds for co-citation clusters and emergence of the giant component," Journal of Informetrics, Elsevier, vol. 3(4), pages 332-340.

    More about this item

    Keywords

    Statistical mechanics; Networks;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:439:y:2015:i:c:p:85-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.