IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp439-447.html
   My bibliography  Save this article

Critical phenomena of spreading dynamics on complex networks with diverse activity of nodes

Author

Listed:
  • Zhou, Li-xin
  • Lin, Jie
  • Wang, Yu-qing
  • Li, Yan-feng
  • Miao, Run-sheng

Abstract

In this paper, we propose a new model to investigate the spreading dynamic and critical phenomena on complex networks based on SIR model. Different from previous studies, we combine the effects of activity rate and infected rate on spreading process. Network nodes become active according to different probability correlated with its degree. Active infected nodes can interact all active susceptible neighbors, meanwhile, recover at a certain probability. By means of the mean-field equations, we find the basic reproductive number and critical threshold of spreading dynamic can be explained by the eigenvalues and eigenvectors of the correlation matrix. Furthermore, we utilize analytical and numerical simulations to explore the critical phenomenon and spreading dynamics of homogeneous and heterogeneous networks respectively. Our results indicate that both homogeneous networks and heterogeneous networks of the model exhibit a critical threshold consists of critical activity rate and infection rate in the spreading dynamic. The critical threshold of infection rate is increased by node activity, and node activity also shows a critical phenomenon given certain infection rate. Results validate that our model is a feasible and economical method to control spreading dynamics and promote further application of innovation diffusion, viral marketing in reality.

Suggested Citation

  • Zhou, Li-xin & Lin, Jie & Wang, Yu-qing & Li, Yan-feng & Miao, Run-sheng, 2018. "Critical phenomena of spreading dynamics on complex networks with diverse activity of nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 439-447.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:439-447
    DOI: 10.1016/j.physa.2018.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307702
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shivakumar Jolad & Wenjia Liu & B Schmittmann & R K P Zia, 2012. "Epidemic Spreading on Preferred Degree Adaptive Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    2. Liu, Chen & Zhou, Li-xin & Fan, Chong-jun & Huo, Liang-an & Tian, Zhan-wei, 2015. "Activity of nodes reshapes the critical threshold of spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 269-278.
    3. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. D. S. Callaway & J. E. Hopcroft & J. M. Kleinberg & M. E. J. Newman & S. H. Strogatz, 2001. "Are Randomly Grown Graphs Really Random?," Working Papers 01-05-025, Santa Fe Institute.
    5. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    3. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    7. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    8. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    9. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    10. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    11. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    12. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    13. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    14. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    15. Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
    16. Yang Zhang & Ying-Ju Chen, 2020. "Optimal Nonlinear Pricing in Social Networks Under Asymmetric Network Information," Operations Research, INFORMS, vol. 68(3), pages 818-833, May.
    17. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    18. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    19. Fan, Chong-jun & Jin, Yang & Huo, Liang-an & Liu, Chen & Yang, Yun-peng & Wang, Ya-qiong, 2016. "Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 523-530.
    20. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:439-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.