IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v378y2007i2p603-612.html
   My bibliography  Save this article

Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks

Author

Listed:
  • Morehead, Raymond
  • Noore, Afzel

Abstract

This paper studies the resiliency of hierarchical networks when subjected to random errors, static attacks, and cascade attacks. The performance is compared with existing Erdös–Rényi (ER) random networks and Barabasi and Albert (BA) scale-free networks using global efficiency as the common performance metric. The results show that critical infrastructures modeled as hierarchical networks are intrinsically efficient and are resilient to random errors, however they are more vulnerable to targeted attacks than scale-free networks. Based on the response dynamics to different attack models, we propose a novel hybrid mitigation strategy that combines discrete levels of critical node reinforcement with additional edge augmentation. The proposed modified topology takes advantage of the high initial efficiency of the hierarchical network while also making it resilient to attacks. Experimental results show that when the level of damage inflicted on a critical node is low, the node reinforcement strategy is more effective, and as the level of damage increases, the additional edge augmentation is highly effective in maintaining the overall network resiliency.

Suggested Citation

  • Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
  • Handle: RePEc:eee:phsmap:v:378:y:2007:i:2:p:603-612
    DOI: 10.1016/j.physa.2006.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106013719
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 2000. "Scale-free characteristics of random networks: the topology of the world-wide web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 69-77.
    2. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. D. S. Callaway & J. E. Hopcroft & J. M. Kleinberg & M. E. J. Newman & S. H. Strogatz, 2001. "Are Randomly Grown Graphs Really Random?," Working Papers 01-05-025, Santa Fe Institute.
    5. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2003. "Efficiency of scale-free networks: error and attack tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 622-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Qian & Zhu, Zhiliang & Qi, Yi & Yu, Hai & Xu, Yanjie, 2018. "Optimization of cascading failure on complex network based on NNIA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 42-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iovanella, Antonio, 2024. "Exploiting network science in business process management: A conceptual framework," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Zhao, Jianyu & Wei, Jiang & Yu, Lean & Xi, Xi, 2022. "Robustness of knowledge networks under targeted attacks: Electric vehicle field of China evidence," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 367-382.
    3. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    4. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    7. Sohn, Insoo, 2019. "A robust complex network generation method based on neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 593-601.
    8. Matteo Cinelli & Giovanna Ferraro & Antonio Iovanella, 2017. "Resilience of Core-Periphery Networks in the Case of Rich-Club," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    9. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    11. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Ghedini, Cinara G. & Ribeiro, Carlos H.C., 2011. "Rethinking failure and attack tolerance assessment in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4684-4691.
    13. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    14. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    15. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.
    16. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    17. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    18. Alice Paul & Susan E. Martonosi, 2024. "The all-pairs vitality-maximization (VIMAX) problem," Annals of Operations Research, Springer, vol. 338(2), pages 1019-1048, July.
    19. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    20. Wang, Lei & Wang, Yu & Zhao, Yulong, 2014. "Mechanism of asymmetric software structures: A complex network perspective from behaviors of new nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 162-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:378:y:2007:i:2:p:603-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.