IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v556y2020ics0378437120303502.html
   My bibliography  Save this article

MF-DCCA between molecular properties and aqueous solubility

Author

Listed:
  • Chen, Hong
  • Zhu, Li
  • Jia, GuoZhu

Abstract

In this paper, we propose a framework, based on Multi-Fractal De-trended Fluctuation Cross-Correlation Analysis (MF-DCCA), to investigate the cross-correlation features between the molecular properties and aqueous solubility using the data set of Delaney-processed widely used for Deep Learning (DL). The molecular properties of Minimum Degree, Number of H-Bond Donors, Number of Rings, Number of Rotatable bonds and Polar Surface Area have a weak power-law cross-correlation with aqueous solubility; the Molecular Weight has a weak long-range cross-correlation. Obvious oscillation of long-range cross-correlation captures through a sliding window approach between molecular properties and aqueous solubility based on the pseudo-time series. Experimental comparison of time-varying cross-correlation widths shows that window widths are more robust to time-varying Hurst exponent. This work can provide a reference for reducing the data dimension for neural network molecular property prediction tasks and help in high-accuracy predicting molecular aqueous solubility on DL.

Suggested Citation

  • Chen, Hong & Zhu, Li & Jia, GuoZhu, 2020. "MF-DCCA between molecular properties and aqueous solubility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  • Handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120303502
    DOI: 10.1016/j.physa.2020.124708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303502
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Cross-correlations between Chinese A-share and B-share markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5468-5478.
    2. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    3. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    4. Zhang, Zuochao & Zhang, Yongjie & Shen, Dehua & Zhang, Wei, 2018. "The cross-correlations between online sentiment proxies: Evidence from Google Trends and Twitter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 67-75.
    5. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    6. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    7. Cao, Guangxi & Han, Yan & Cui, Weijun & Guo, Yu, 2014. "Multifractal detrended cross-correlations between the CSI 300 index futures and the spot markets based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 308-320.
    8. Zhang, Chen & Ni, Zhiwei & Ni, Liping, 2015. "Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 114-123.
    9. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    10. Lin, Min & Wang, Gang-Jin & Xie, Chi & Stanley, H. Eugene, 2018. "Cross-correlations and influence in world gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 504-512.
    11. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    12. S. Shadkhoo & G. R. Jafari, 2009. "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 679-683, December.
    13. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2009. "Long correlations and Levy models applied to the study of memory effects in high frequency (tick) data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1659-1664.
    14. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    15. Wang, Gang-Jin & Xie, Chi & Lin, Min & Stanley, H. Eugene, 2017. "Stock market contagion during the global financial crisis: A multiscale approach," Finance Research Letters, Elsevier, vol. 22(C), pages 163-168.
    16. Dai, Meifeng & Hou, Jie & Ye, Dandan, 2016. "Multifractal detrended fluctuation analysis based on fractal fitting: The long-range correlation detection method for highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 722-731.
    17. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    18. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    2. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    3. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    4. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    5. Ma, Feng & Wei, Yu & Huang, Dengshi & Zhao, Lin, 2013. "Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5356-5368.
    6. Liu, Li, 2014. "Cross-correlations between crude oil and agricultural commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 293-302.
    7. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    8. Ruan, Qingsong & Jiang, Wei & Ma, Guofeng, 2016. "Cross-correlations between price and volume in Chinese gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 10-22.
    9. Guo, Yaoqi & Yu, Zhuling & Yu, Chenxi & Cheng, Hui & Chen, Weixun & Zhang, Hongwei, 2021. "Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA," Research in International Business and Finance, Elsevier, vol. 58(C).
    10. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    11. Ma, Feng & Wei, Yu & Huang, Dengshi, 2013. "Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1659-1670.
    12. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    13. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    14. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    15. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    16. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    17. Gu, Rongbao & Zhang, Bing, 2016. "Is efficiency of crude oil market affected by multifractality? Evidence from the WTI crude oil market," Energy Economics, Elsevier, vol. 53(C), pages 151-158.
    18. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    19. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    20. Ruan, Qingsong & Zhou, Mi & Yin, Linsen & Lv, Dayong, 2021. "Hedging effectiveness of Chinese Treasury bond futures: New evidence based on nonlinear analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120303502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.