IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0140442.html
   My bibliography  Save this article

Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

Author

Listed:
  • Christian Wehenkel
  • João Marcelo Brazão-Protázio
  • Artemio Carrillo-Parra
  • José Hugo Martínez-Guerrero
  • Felipe Crecente-Campo

Abstract

The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.

Suggested Citation

  • Christian Wehenkel & João Marcelo Brazão-Protázio & Artemio Carrillo-Parra & José Hugo Martínez-Guerrero & Felipe Crecente-Campo, 2015. "Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0140442
    DOI: 10.1371/journal.pone.0140442
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140442
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0140442&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0140442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Peter J. Diggle, 1977. "Simple Monte Carlo Tests for Spatial Pattern," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 327-333, November.
    2. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    2. Golay, Jean & Kanevski, Mikhail & Vega Orozco, Carmen D. & Leuenberger, Michael, 2014. "The multipoint Morisita index for the analysis of spatial patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 191-202.
    3. Zack W. Almquist & Carter T. Butts, 2012. "Point process models for household distributions within small areal units," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(22), pages 593-632.
    4. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    5. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    6. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    7. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    8. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    9. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    10. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    11. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    12. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    13. Liao, Jinbao & Li, Zhenqing & Quets, Jan J. & Nijs, Ivan, 2013. "Effects of space partitioning in a plant species diversity model," Ecological Modelling, Elsevier, vol. 251(C), pages 271-278.
    14. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    15. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    16. Herguido Sevillano, E. & Lavado Contador, J.F. & Schnabel, S. & Pulido, M. & Ibáñez, J., 2018. "Using spatial models of temporal tree dynamics to evaluate the implementation of EU afforestation policies in rangelands of SW Spain," Land Use Policy, Elsevier, vol. 78(C), pages 166-175.
    17. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    18. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    19. Subhankar Ghosh & Jayant Gupta & Arun Sharma & Shuai An & Shashi Shekhar, 2024. "Reducing False Discoveries in Statistically-Significant Regional-Colocation Mining: A Summary of Results," Papers 2407.02536, arXiv.org.
    20. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0140442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.