IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v402y2014icp169-179.html
   My bibliography  Save this article

The impact of the topology on cascading failures in a power grid model

Author

Listed:
  • Koç, Yakup
  • Warnier, Martijn
  • Mieghem, Piet Van
  • Kooij, Robert E.
  • Brazier, Frances M.T.

Abstract

Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.

Suggested Citation

  • Koç, Yakup & Warnier, Martijn & Mieghem, Piet Van & Kooij, Robert E. & Brazier, Frances M.T., 2014. "The impact of the topology on cascading failures in a power grid model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 169-179.
  • Handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:169-179
    DOI: 10.1016/j.physa.2014.01.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114000776
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.01.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    2. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    3. Ma, Tian-Lin & Yao, Jian-Xi & Qi, Cheng & Zhu, Hong-Lu & Sun, Yu-Shu, 2013. "Non-monotonic increase of robustness with capacity tolerance in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5516-5524.
    4. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    5. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua, 2009. "An improved model for structural vulnerability analysis of power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4259-4266.
    6. Bompard, Ettore & Napoli, Roberto & Xue, Fei, 2009. "Analysis of structural vulnerabilities in power transmission grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 5-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Dongyue & Hu, Funian & Wang, Shuliang & Chen, Jun, 2021. "Power network robustness analysis based on electrical engineering and complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    2. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    3. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2020. "Power flow-based approaches to assess vulnerability, reliability, and contingency of the power systems: The benefits and limitations," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    7. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    8. Koç, Yakup & Warnier, Martijn & Van Mieghem, Piet & Kooij, Robert E. & Brazier, Frances M.T., 2014. "A topological investigation of phase transitions of cascading failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 273-284.
    9. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    10. Upama Nakarmi & Mahshid Rahnamay Naeini & Md Jakir Hossain & Md Abul Hasnat, 2020. "Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey," Energies, MDPI, vol. 13(9), pages 1-25, May.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Nikolaj Horsevad & David Mateo & Robert E. Kooij & Alain Barrat & Roland Bouffanais, 2022. "Transition from simple to complex contagion in collective decision-making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Lee, Seulbi & Choi, Minji & Lee, Hyun-Soo & Park, Moonseo, 2020. "Bayesian network-based seismic damage estimation for power and potable water supply systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    15. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    16. Shi, Xiaoqiu & Long, Wei & Li, Yanyan & Deng, Dingshan, 2022. "Robustness of interdependent supply chain networks against both functional and structural cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    3. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    5. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    6. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    7. Fei Xue & Yingyu Xu & Huaiying Zhu & Shaofeng Lu & Tao Huang & Jinling Zhang, 2017. "Structural Evaluation for Distribution Networks with Distributed Generation Based on Complex Network," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    8. Ma, Tian-Lin & Yao, Jian-Xi & Qi, Cheng & Zhu, Hong-Lu & Sun, Yu-Shu, 2013. "Non-monotonic increase of robustness with capacity tolerance in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5516-5524.
    9. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    10. Koç, Yakup & Warnier, Martijn & Van Mieghem, Piet & Kooij, Robert E. & Brazier, Frances M.T., 2014. "A topological investigation of phase transitions of cascading failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 273-284.
    11. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    12. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    13. Xue, Fei & Bompard, Ettore & Huang, Tao & Jiang, Lin & Lu, Shaofeng & Zhu, Huaiying, 2017. "Interrelation of structure and operational states in cascading failure of overloading lines in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 728-740.
    14. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    15. Trivik Verma & Wendy Ellens & Robert E. Kooij, 2015. "Context-independent centrality measures underestimate the vulnerability of power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 62-81.
    16. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    17. Ouyang, Min & Pan, Zhezhe & Hong, Liu & Zhao, Lijing, 2014. "Correlation analysis of different vulnerability metrics on power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 204-211.
    18. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    19. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    20. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:169-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.