IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v397y2014icp54-75.html
   My bibliography  Save this article

A statistical measure of financial crises magnitude

Author

Listed:
  • Negrea, Bogdan

Abstract

This paper postulates the concept of financial market energy and provides a statistical measure of the financial market crisis magnitude based on an analogy between earthquakes and market crises. The financial energy released by the market is expressed in terms of trading volume and stock market index returns. A financial “earthquake” occurs if the financial energy released by the market exceeds the estimated threshold of market energy called critical energy. Similar to the Richter scale which is used in seismology in order to measure the magnitude of an earthquake, we propose a financial Gutenberg–Richter relation in order to capture the crisis magnitude and we show that the statistical pattern of the financial market crash is given by two statistical regimes, namely Pareto and Wakeby distributions.

Suggested Citation

  • Negrea, Bogdan, 2014. "A statistical measure of financial crises magnitude," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 54-75.
  • Handle: RePEc:eee:phsmap:v:397:y:2014:i:c:p:54-75
    DOI: 10.1016/j.physa.2013.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113010972
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    2. Selçuk, Faruk, 2004. "Financial earthquakes, aftershocks and scaling in emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 306-316.
    3. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    4. Charles P. Kindleberger & Robert Z. Aliber, 2005. "Manias, Panics and Crashes," Palgrave Macmillan Books, Palgrave Macmillan, edition 0, number 978-0-230-62804-5, December.
    5. Obstfeld, Maurice, 1996. "Models of currency crises with self-fulfilling features," European Economic Review, Elsevier, vol. 40(3-5), pages 1037-1047, April.
    6. Kapopoulos, Panayotis & Siokis, Fotios, 2005. "Stock market crashes and dynamics of aftershocks," Economics Letters, Elsevier, vol. 89(1), pages 48-54, October.
    7. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    8. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    9. Mishkin, Frederic S, 1992. "Anatomy of a Financial Crisis," Journal of Evolutionary Economics, Springer, vol. 2(2), pages 115-130, August.
    10. A. Johansen & D. Sornette, 1998. "Stock market crashes are outliers," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 1(2), pages 141-143, January.
    11. Pisarenko, V. & Sornette, D., 2006. "New statistic for financial return distributions: Power-law or exponential?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 387-400.
    12. Mu, Guo-Hua & Zhou, Wei-Xing, 2008. "Relaxation dynamics of aftershocks after large volatility shocks in the SSEC index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5211-5218.
    13. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    14. Sornette, Didier & Johansen, Anders, 1998. "A hierarchical model of financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 581-598.
    15. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    16. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    17. Bertrand Maillet & Thierry Michel, 2003. "An index of market shocks based on multiscale analysis," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 88-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Pasca Lucian, 2015. "A Critical Review of the Main Approaches on Financial Market Dynamics Modelling," Journal of Heterodox Economics, Sciendo, vol. 2(2), pages 151-167, December.
    3. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Guo-Hua & Zhou, Wei-Xing, 2008. "Relaxation dynamics of aftershocks after large volatility shocks in the SSEC index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5211-5218.
    2. Bikramaditya Ghosh & Spyros Papathanasiou & Vandita Dar & Dimitrios Kenourgios, 2022. "Deconstruction of the Green Bubble during COVID-19 International Evidence," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Siokis, Fotios M., 2012. "Stock market dynamics: Before and after stock market crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1315-1322.
    4. Kapopoulos, Panayotis & Siokis, Fotios, 2005. "Stock market crashes and dynamics of aftershocks," Economics Letters, Elsevier, vol. 89(1), pages 48-54, October.
    5. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    6. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    7. Grobys, Klaus, 2023. "A finite-time singularity in the dynamics of the US equity market: Will the US equity market eventually collapse?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    8. Fotios M. Siokis, 2024. "Exploring the Dynamic Behavior of Crude Oil Prices in Times of Crisis: Quantifying the Aftershock Sequence of the COVID-19 Pandemic," Mathematics, MDPI, vol. 12(17), pages 1-13, September.
    9. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    10. Siokis, Fotios M., 2012. "The dynamics of a complex system: The exchange rate crisis in Southeast Asia," Economics Letters, Elsevier, vol. 114(1), pages 98-101.
    11. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    12. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    13. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    14. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    15. Anders Johansen & Didier Sornette & Olivier Ledoit, 1999. "Empirical and Theoretical Status of Discrete Scale Invariance in Financial Crashes," Finance 9903006, University Library of Munich, Germany.
    16. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    17. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    18. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    19. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    20. B. M. Roehner & D. Sornette, 2000. ""Thermometers" of Speculative Frenzy," Papers cond-mat/0001353, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:397:y:2014:i:c:p:54-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.