IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v171y2023ics0960077923003326.html
   My bibliography  Save this article

Time evolution of nonadditive entropies: The logistic map

Author

Listed:
  • Tsallis, Constantino
  • Borges, Ernesto P.

Abstract

Due to the second principle of thermodynamics, the time dependence of entropy for all kinds of systems under all kinds of physical circumstances always thrives interest. The logistic map xt+1=1−axt2∈[−1,1](a∈[0,2]) is neither large, since it has only one degree of freedom, nor closed, since it is dissipative. It exhibits, nevertheless, a peculiar time evolution of its natural entropy, which is the additive Boltzmann–Gibbs-Shannon one, SBG=−∑i=1Wpilnpi, for all values of a for which the Lyapunov exponent is positive, and the nonadditive one Sq=1−∑i=1Wpiqq−1 with q=0.2445… at the edge of chaos, where the Lyapunov exponent vanishes, W being the number of windows of the phase space partition. We numerically show that, for increasing time, the phase-space-averaged entropy overshoots above its stationary-state value in all cases. However, when W→∞, the overshooting gradually disappears for the most chaotic case (a=2), whereas, in remarkable contrast, it appears to monotonically diverge at the Feigenbaum point (a=1.4011…). Consequently, the stationary-state entropy value is achieved from above, instead of from below, as it could have been a priori expected. These results raise the question whether the usual requirements – large, closed, and for generic initial conditions – for the second principle validity might be necessary but not sufficient.

Suggested Citation

  • Tsallis, Constantino & Borges, Ernesto P., 2023. "Time evolution of nonadditive entropies: The logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003326
    DOI: 10.1016/j.chaos.2023.113431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robledo, A., 2006. "Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 449-460.
    2. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    3. Kaniadakis, G., 2001. "Non-linear kinetics underlying generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(3), pages 405-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsallis, Constantino & Borges, Ernesto P. & Plastino, Angel R., 2023. "Entropy evolution at generic power-law edge of chaos," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    3. Preda, Vasile & Dedu, Silvia & Sheraz, Muhammad, 2014. "New measure selection for Hunt–Devolder semi-Markov regime switching interest rate models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 350-359.
    4. Naudts, Jan, 2004. "Generalized thermostatistics and mean-field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 279-300.
    5. Naudts, Jan, 2004. "Generalized thermostatistics based on deformed exponential and logarithmic functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 32-40.
    6. Naudts, Jan, 2002. "Deformed exponentials and logarithms in generalized thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 323-334.
    7. Bafghi, Seyed Mohammad Amin Tabatabaei & Kamalvand, Mohammad & Morsali, Ali & Bozorgmehr, Mohammad Reza, 2018. "Radial distribution function within the framework of the Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 857-867.
    8. da Silva, Sérgio Luiz Eduardo Ferreira & dos Santos Lima, Gustavo Zampier & de Araújo, João Medeiros & Corso, Gilberto, 2021. "Extensive and nonextensive statistics in seismic inversion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    9. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    10. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    11. Yuri Biondi & Simone Righi, 2019. "Inequality, mobility and the financial accumulation process: a computational economic analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 93-119, March.
    12. Masi, Marco, 2007. "On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 67-78.
    13. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    14. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    15. Igor Lazov, 2019. "A Methodology for Revenue Analysis of Parking Lots," Networks and Spatial Economics, Springer, vol. 19(1), pages 177-198, March.
    16. Fabio Clementi & Mauro Gallegati, 2005. "Pareto's Law of Income Distribution: Evidence for Grermany, the United Kingdom, and the United States," Microeconomics 0505006, University Library of Munich, Germany.
    17. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    18. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    19. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    20. Umpierrez, Haridas & Davis, Sergio, 2021. "Fluctuation theorems in q-canonical ensembles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.