IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v375y2007i2p499-517.html
   My bibliography  Save this article

On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles

Author

Listed:
  • Zozor, S.
  • Vignat, C.

Abstract

In this paper we revisit the Bialynicki-Birula and Mycielski uncertainty principle and its cases of equality. This Shannon entropic version of the well-known Heisenberg uncertainty principle can be used when dealing with variables that admit no variance. In this paper, we extend this uncertainty principle to Rényi entropies. We recall that in both Shannon and Rényi cases, and for a given dimension n, the only case of equality occurs for Gaussian random vectors. We show that as n grows, however, the bound is also asymptotically attained in the cases of n-dimensional Student-t and Student-r distributions. A complete analytical study is performed in a special case of a Student-t distribution. We also show numerically that this effect exists for the particular case of a n-dimensional Cauchy variable, whatever the Rényi entropy considered, extending the results of Abe and illustrating the analytical asymptotic study of the Student-t case. In the Student-r case, we show numerically that the same behavior occurs for uniformly distributed vectors. These particular cases and other ones investigated in this paper are interesting since they show that this asymptotic behavior cannot be considered as a “Gaussianization” of the vector when the dimension increases.

Suggested Citation

  • Zozor, S. & Vignat, C., 2007. "On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 499-517.
  • Handle: RePEc:eee:phsmap:v:375:y:2007:i:2:p:499-517
    DOI: 10.1016/j.physa.2006.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106010028
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vignat, C & Hero III, A.O & Costa, J.A, 2004. "About closedness by convolution of the Tsallis maximizers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 147-152.
    2. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    3. Lenzi, E.K. & Mendes, R.S. & da Silva, L.R., 2000. "Statistical mechanics based on Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 337-345.
    4. Tomasz J. Kozubowski & Krzysztof Podgórski, 2000. "A Multivariate and Asymmetric Generalization of Laplace Distribution," Computational Statistics, Springer, vol. 15(4), pages 531-540, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zozor, Steeve & Portesi, Mariela & Vignat, Christophe, 2008. "Some extensions of the uncertainty principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4800-4808.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    2. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    3. Oikonomou, Th., 2007. "Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 119-134.
    4. Suyari, Hiroki, 2006. "Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 63-82.
    5. Oikonomou, Thomas & Tirnakli, Ugur, 2009. "Generalized entropic structures and non-generality of Jaynes’ Formalism," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3027-3034.
    6. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    7. Tsionas, Mike G. & Assaf, A. George & Andrikopoulos, Athanasios, 2020. "Quantile stochastic frontier models with endogeneity," Economics Letters, Elsevier, vol. 188(C).
    8. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Myrela Alves & David M. Garner & Anne M. G. G. Fontes & Luiz Vinicius de Alcantara Sousa & Vitor E. Valenti, 2018. "Linear and Complex Measures of Heart Rate Variability during Exposure to Traffic Noise in Healthy Women," Complexity, Hindawi, vol. 2018, pages 1-14, June.
    10. Masi, Marco, 2007. "On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 67-78.
    11. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    12. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    14. Pintarelli, María B. & Vericat, Fernando, 2003. "Generalized Hausdorff inverse moment problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 568-588.
    15. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    16. Telesca, Luciano, 2010. "Nonextensive analysis of seismic sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1911-1914.
    17. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    18. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    19. Ou, Congjie & Chen, Jincan & Wang, Qiuping A., 2006. "Temperature definition and fundamental thermodynamic relations in incomplete statistics," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 518-521.
    20. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:2:p:499-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.