IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v413y2014icp104-115.html
   My bibliography  Save this article

Diffusion of two brands in competition: Cross-brand effect

Author

Listed:
  • Laciana, C.E.
  • Gual, G.
  • Kalmus, D.
  • Oteiza-Aguirre, N.
  • Rovere, S.L.

Abstract

We study the equilibrium points of a system of equations corresponding to a Bass based model that describes the diffusion of two brands in competition. To increase the understanding of the effects of the cross-brand parameters, we perform a sensitivity analysis. Finally, we show a comparison with an agent-based model inspired in the Potts model. Conclusions include that both models give the same diffusion curves only when the cross coefficients are not null.

Suggested Citation

  • Laciana, C.E. & Gual, G. & Kalmus, D. & Oteiza-Aguirre, N. & Rovere, S.L., 2014. "Diffusion of two brands in competition: Cross-brand effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 104-115.
  • Handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:104-115
    DOI: 10.1016/j.physa.2014.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114004841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabik Ar Chatterjee & Jehoshua Eliashberg, 1990. "The Innovation Diffusion Process in a Heterogeneous Population: A Micromodeling Approach," Management Science, INFORMS, vol. 36(9), pages 1057-1079, September.
    2. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    5. Laciana, Carlos E. & Oteiza-Aguirre, Nicolás, 2014. "An agent based multi-optional model for the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 254-265.
    6. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    7. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    8. Laciana, Carlos E. & Rovere, Santiago L., 2011. "Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1139-1149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Manuel Rodríguez Achach & Enrique Baquedano Pérez, 2017. "Formation of monopolies in a bipartite market," Contaduría y Administración, Accounting and Management, vol. 62(4), pages 1335-1344, Octubre-D.
    3. Bo Tan & Zhiguo Zhu & Pan Jiang & Xiening Wang, 2023. "Modeling Multi-Generation Product Diffusion in the Context of Dual-Brand Competition and Sustainable Improvement," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    4. Geng, Yang & Zhang, Yulin, 2020. "Platform launch in two-sided markets and users’ expectations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    2. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Guseo, Renato & Guidolin, Mariangela, 2015. "Heterogeneity in diffusion of innovations modelling: A few fundamental types," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 514-524.
    4. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.
    5. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    6. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    7. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    8. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    10. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    11. Hong, Zhaofu & Li, Mengfan & Han, Xiaoya & He, Xuhuai, 2020. "Innovative green product diffusion through word of mouth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    12. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    13. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    14. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2019. "Modeling Technological Substitution by Incorporating Dynamic Adoption Rate," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-24, February.
    15. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    16. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    17. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    18. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    19. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    20. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:104-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.