IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i7p1631-1637.html
   My bibliography  Save this article

How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis

Author

Listed:
  • Reboredo, Juan C.
  • Rivera-Castro, Miguel A.
  • Miranda, José G.V.
  • García-Rubio, Raquel

Abstract

In this paper we analyse price fluctuations with the aim of measuring how long the market takes to adjust prices to weak-form efficiency, i.e., how long it takes for prices to adjust to a fractional Brownian motion with a Hurst exponent of 0.5. The Hurst exponent is estimated for different time horizons using detrended fluctuation analysis–a method suitable for non-stationary series with trends–in order to identify at which time scale the Hurst exponent is consistent with the efficient market hypothesis. Using high-frequency share price, exchange rate and stock data, we show how price dynamics exhibited important deviations from efficiency for time periods of up to 15 min; thereafter, price dynamics was consistent with a geometric Brownian motion. The intraday behaviour of the series also indicated that price dynamics at trade opening and close was hardly consistent with efficiency, which would enable investors to exploit price deviations from fundamental values. This result is consistent with intraday volume, volatility and transaction time duration patterns.

Suggested Citation

  • Reboredo, Juan C. & Rivera-Castro, Miguel A. & Miranda, José G.V. & García-Rubio, Raquel, 2013. "How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1631-1637.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:7:p:1631-1637
    DOI: 10.1016/j.physa.2012.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010035
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. McQueen, Grant & Thorley, Steven, 1991. "Are Stock Returns Predictable? A Test Using Markov Chains," Journal of Finance, American Finance Association, vol. 46(1), pages 239-263, March.
    4. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Carlos Echeverria, Juan, 2009. "A DFA approach for assessing asymmetric correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2263-2270.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Cajueiro, Daniel O. & Tabak, Benjamin M. & Souza, Nathalia A., 2005. "Periodic market closures and the long-range dependence phenomena in the Brazilian equity market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 512-522.
    7. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    8. Busse, Jeffrey A. & Clifton Green, T., 2002. "Market efficiency in real time," Journal of Financial Economics, Elsevier, vol. 65(3), pages 415-437, September.
    9. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    10. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    11. Hillmer, S. C. & Yu, P. L., 1979. "The market speed of adjustment to new information," Journal of Financial Economics, Elsevier, vol. 7(4), pages 321-345, December.
    12. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    13. Podobnik, Boris & Fu, Dongfeng & Jagric, Timotej & Grosse, Ivo & Eugene Stanley, H., 2006. "Fractionally integrated process for transition economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 465-470.
    14. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
    15. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    16. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    17. Bradford Cornell & Richard Roll, 1981. "Strategies for Pairwise Competition in Markets and Organizations," Bell Journal of Economics, The RAND Corporation, vol. 12(1), pages 201-213, Spring.
    18. Grossman, Sanford J, 1976. "On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information," Journal of Finance, American Finance Association, vol. 31(2), pages 573-585, May.
    19. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2005. "Evidence on the speed of convergence to market efficiency," Journal of Financial Economics, Elsevier, vol. 76(2), pages 271-292, May.
    20. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    21. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    22. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    23. Visaltanachoti, Nuttawat & Yang, Ting, 2010. "Speed of convergence to market efficiency for NYSE-listed foreign stocks," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 594-605, March.
    24. Wang, Yudong & Liu, Li & Gu, Rongbao & Cao, Jianjun & Wang, Haiyan, 2010. "Analysis of market efficiency for the Shanghai stock market over time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1635-1642.
    25. José M. Matías & Juan C. Reboredo, 2012. "Forecasting Performance of Nonlinear Models for Intraday Stock Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 172-188, March.
    26. Amihud, Yakov & Mendelson, Haim, 1987. "Trading Mechanisms and Stock Returns: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 42(3), pages 533-553, July.
    27. Chakrabarti, Rajesh & Roll, Richard, 1999. "Learning from others, reacting, and market quality1," Journal of Financial Markets, Elsevier, vol. 2(2), pages 153-178, May.
    28. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    2. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
    3. Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
    4. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Hiremath, Gourishankar S. & Kattuman, Paul, 2017. "Foreign portfolio flows and emerging stock market: Is the midnight bell ringing in India?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 544-558.
    6. Parthajit Kayal & S. Maheswaran, 2018. "Speed of Price Adjustment towards Market Efficiency: Evidence from Emerging Countries," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(1_suppl), pages 112-135, April.
    7. Roy Cerqueti & Giulia Rotundo, 2015. "A review of aggregation techniques for agent-based models: understanding the presence of long-term memory," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1693-1717, July.
    8. Chamil W SENARATHNE & Wei JIANGUO, 2020. "Testing for Heteroskedastic Mixture of Ordinary Least Squares Errors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 73-91, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parthajit Kayal & S. Maheswaran, 2018. "Speed of Price Adjustment towards Market Efficiency: Evidence from Emerging Countries," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(1_suppl), pages 112-135, April.
    2. Marcus F. da Silva & Eder Johnson de Area Leão Pereira & Idaraí Santos de Santana & José Garcia Vivas Miranda, 2013. "Pattern of fluctuations in the exchange rate change from fixed to floating, in Brazil, Argentina and Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1547-1555.
    3. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    4. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2005. "Evidence on the speed of convergence to market efficiency," Journal of Financial Economics, Elsevier, vol. 76(2), pages 271-292, May.
    5. Kamal, Mona, 2014. "Studying the Validity of the Efficient Market Hypothesis (EMH) in the Egyptian Exchange (EGX) after the 25th of January Revolution," MPRA Paper 54708, University Library of Munich, Germany.
    6. Parthajit Kayal & Sayanti Mondal, 2020. "Speed of Price Adjustment in Indian Stock Market: A Paradox," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 453-476, December.
    7. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2001. "Evidence on the Speed of Convergence to Market Efficiency, forthcoming: Journal of Financial Economics," University of California at Los Angeles, Anderson Graduate School of Management qt8wb6140g, Anderson Graduate School of Management, UCLA.
    9. Yang, Jian & Cabrera, Juan & Wang, Tao, 2010. "Nonlinearity, data-snooping, and stock index ETF return predictability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 498-507, January.
    10. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
    11. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    12. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    13. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    14. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    15. Ke Meng & Shouhao Li, 2021. "The adaptive market hypothesis and high frequency trading," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
    16. Chiang, Raymond & Liu, Peter & Okunev, John, 1995. "Modelling mean reversion of asset prices towards their fundamental value," Journal of Banking & Finance, Elsevier, vol. 19(8), pages 1327-1340, November.
    17. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    18. Dan Gabriel ANGHEL, 2017. "Intraday Market Efficiency for a Typical Central and Eastern European Stock Market: The Case of Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 88-109, September.
    19. Jian Zhou & Gao-Feng Gu & Zhi-Qiang Jiang & Xiong Xiong & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2017. "Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 579-594, December.
    20. Fatma SIALA GUERMEZI, & Amani BOUSSAADA, 2016. "The Weak Form Of Informational Efficiency: Case Of Tunisian Banking Sector," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 5(1), pages 1-1, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:7:p:1631-1637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.