IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002233.html
   My bibliography  Save this article

How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes

Author

Listed:
  • E P Raposo
  • F Bartumeus
  • M G E da Luz
  • P J Ribeiro-Neto
  • T A Souza
  • G M Viswanathan

Abstract

Theoretical and empirical investigations of search strategies typically have failed to distinguish the distinct roles played by density versus patchiness of resources. It is well known that motility and diffusivity of organisms often increase in environments with low density of resources, but thus far there has been little progress in understanding the specific role of landscape heterogeneity and disorder on random, non-oriented motility. Here we address the general question of how the landscape heterogeneity affects the efficiency of encounter interactions under global constant density of scarce resources. We unveil the key mechanism coupling the landscape structure with optimal search diffusivity. In particular, our main result leads to an empirically testable prediction: enhanced diffusivity (including superdiffusive searches), with shift in the diffusion exponent, favors the success of target encounters in heterogeneous landscapes. Author Summary: Understanding how animals search for food is crucial for animal ecology. Although much has been learned about the main aspects of the so-called foraging problem, some important questions still remain unanswered. In this work we address the issue of the relevance of heterogeneity in the resources distribution to efficient animal foraging behavior. Our results unveil the key mechanism coupling landscape heterogeneity dynamics with optimal search diffusivity. Indeed, although the effect of (global) resource density on animal foraging behavior is well documented, much less has been known about how spatiotemporal landscape heterogeneity affects the efficiency of encounter interactions by foraging organisms. In this sense, we propose a new empirically testable theoretical prediction on the dynamics (e.g. diffusion exponent) of foraging organisms in heterogeneous environments. We also show that the conditions in which Lévy strategies are optimal are much broader than previously considered.

Suggested Citation

  • E P Raposo & F Bartumeus & M G E da Luz & P J Ribeiro-Neto & T A Souza & G M Viswanathan, 2011. "How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-8, November.
  • Handle: RePEc:plo:pcbi00:1002233
    DOI: 10.1371/journal.pcbi.1002233
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002233
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002233&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. David W. Sims & Emily J. Southall & Nicolas E. Humphries & Graeme C. Hays & Corey J. A. Bradshaw & Jonathan W. Pitchford & Alex James & Mohammed Z. Ahmed & Andrew S. Brierley & Mark A. Hindell & David, 2008. "Scaling laws of marine predator search behaviour," Nature, Nature, vol. 451(7182), pages 1098-1102, February.
    3. da Luz, M.G.E & Buldyrev, Sergey V & Havlin, Shlomo & Raposo, E.P & Stanley, H.Eugene & Viswanathan, G.M, 2001. "Improvements in the statistical approach to random Lévy flight searches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 89-92.
    4. Reynolds, A.M., 2010. "Balancing the competing demands of harvesting and safety from predation: Lévy walk searches outperform composite Brownian walk searches but only when foraging under the risk of predation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4740-4746.
    5. Carl Giuffre & Peter Hinow & Ryan Vogel & Tanvir Ahmed & Roman Stocker & Thomas R Consi & J Rudi Strickler, 2011. "The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-6, April.
    6. Buldyrev, S.V. & Gitterman, M. & Havlin, S. & Kazakov, A.Ya. & da Luz, M.G.E. & Raposo, E.P. & Stanley, H.E. & Viswanathan, G.M., 2001. "Properties of Lévy flights on an interval with absorbing boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 148-161.
    7. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Yann S Dufour & Sébastien Gillet & Nicholas W Frankel & Douglas B Weibel & Thierry Emonet, 2016. "Direct Correlation between Motile Behavior and Protein Abundance in Single Cells," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-25, September.
    5. Sepideh Bazazi & Frederic Bartumeus & Joseph J Hale & Iain D Couzin, 2012. "Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    6. Masato S Abe & Masakazu Shimada, 2015. "Lévy Walks Suboptimal under Predation Risk," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. Sepideh Bazazi & Frederic Bartumeus & Joseph J Hale & Iain D Couzin, 2012. "Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    4. Filippo Radicchi & Andrea Baronchelli & Luís A N Amaral, 2012. "Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    5. Pauline Formaglio & Marina E. Wosniack & Raphael M. Tromer & Jaderson G. Polli & Yuri B. Matos & Hang Zhong & Ernesto P. Raposo & Marcos G. E. Luz & Rogerio Amino, 2023. "Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    7. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    8. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    10. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    11. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    12. Tomassini, Marco, 2016. "Lévy flights in neutral fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 163-171.
    13. Masato S Abe & Masakazu Shimada, 2015. "Lévy Walks Suboptimal under Predation Risk," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-16, November.
    14. Danish A Ahmed & Ali R Ansari & Mudassar Imran & Kamal Dingle & Michael B Bonsall, 2021. "Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-20, October.
    15. Baronchelli, Andrea & Radicchi, Filippo, 2013. "Lévy flights in human behavior and cognition," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 101-105.
    16. Alexander Maye & Chih-hao Hsieh & George Sugihara & Björn Brembs, 2007. "Order in Spontaneous Behavior," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    17. Boschetti, Fabio & Vanderklift, Mathew A., 2015. "How the movement characteristics of large marine predators influence estimates of their abundance," Ecological Modelling, Elsevier, vol. 313(C), pages 223-236.
    18. Burnecki, Krzysztof & Sikora, Grzegorz, 2017. "Identification and validation of stable ARFIMA processes with application to UMTS data," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 456-466.
    19. Tongtong Liu & Zheng Yang & Yi Zhao & Chenshu Wu & Zimu Zhou & Yunhao Liu, 2018. "Temporal understanding of human mobility: A multi-time scale analysis," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    20. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.