IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i4p857-868.html
   My bibliography  Save this article

A model of the effects of authority on consensus formation in adaptive networks: Impact on network topology and robustness

Author

Listed:
  • Prettejohn, Brenton J.
  • Berryman, Matthew J.
  • McDonnell, Mark D.

Abstract

Opinions of individuals in real social networks are arguably strongly influenced by external determinants, such as the opinions of those perceived to have the highest levels of authority. In order to model this, we have extended an existing model of consensus formation in an adaptive network by the introduction of a parameter representing each agent’s level of ‘authority’, based on their opinion relative to the overall opinion distribution. We found that introducing this model, along with a randomly varying opinion convergence factor, significantly impacts the final state of converged opinions and the number of interactions required to reach that state. We also determined the relationship between initial and final network topologies for this model, and whether the final topology is robust to node removals. Our results indicate firstly that the process of consensus formation with a model of authority consistently transforms the network from an arbitrary initial topology to one with distinct measurements in mean shortest path, clustering coefficient, and degree distribution. Secondly, we found that subsequent to the consensus formation process, the mean shortest path and clustering coefficient are less affected by both random and targeted node disconnection. Speculation on the relevance of these results to real world applications is provided.

Suggested Citation

  • Prettejohn, Brenton J. & Berryman, Matthew J. & McDonnell, Mark D., 2013. "A model of the effects of authority on consensus formation in adaptive networks: Impact on network topology and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 857-868.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:857-868
    DOI: 10.1016/j.physa.2012.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112009144
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandica, Yérali & del Castillo-Mussot, Marcelo & Vázquez, Gerardo J. & Rojas, Sergio, 2010. "Continuous opinion model in small-world directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5864-5870.
    2. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    3. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    4. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    5. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    6. Weisbuch, Gérard & Deffuant, Guillaume & Amblard, Frédéric, 2005. "Persuasion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 555-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    2. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    4. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    5. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    8. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    9. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    10. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    11. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    12. Gary Mckeown & Noel Sheehy, 2006. "Mass Media and Polarisation Processes in the Bounded Confidence Model of Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-11.
    13. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    14. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    15. Weimer-Jehle, Wolfgang, 2008. "Cross-impact balances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3689-3700.
    16. Jean-Philippe Cointet & Camille Roth, 2007. "How Realistic Should Knowledge Diffusion Models Be?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-5.
    17. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    18. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    19. Comellas, Francesc & Miralles, Alicia, 2009. "Modeling complex networks with self-similar outerplanar unclustered graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2227-2233.
    20. Diemo Urbig & Jan Lorenz & Heiko Herzberg, 2008. "Opinion Dynamics: the Effect of the Number of Peers Met at Once," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:857-868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.