IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i15p3260-3272.html
   My bibliography  Save this article

Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

Author

Listed:
  • Ji, Junzhong
  • Song, Xiangjing
  • Liu, Chunnian
  • Zhang, Xiuzhen

Abstract

Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

Suggested Citation

  • Ji, Junzhong & Song, Xiangjing & Liu, Chunnian & Zhang, Xiuzhen, 2013. "Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3260-3272.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3260-3272
    DOI: 10.1016/j.physa.2013.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002975
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Jin & Dayou Liu & Bo Yang & Jie Liu & Dongxiao He, 2011. "Ant Colony Optimization With A New Random Walk Model For Community Detection In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 795-815.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Faqeeh, Ali & Aghababaei Samani, Keivan, 2012. "Community detection based on the “clumpiness” matrix in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2463-2474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    2. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    3. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    4. de Andrade, Lúcio Pereira & Espíndola, Rogério Pinto & Pereira, Gilberto Carvalho & Ebecken, Nelson Francisco Favilla, 2016. "Fuzzy modeling of plankton networks," Ecological Modelling, Elsevier, vol. 337(C), pages 149-155.
    5. Malek Khojasteh Nejad, 2014. "Clustering Stock Exchange data by Using Evolutionary Algorithms for Portfolio Management," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 55-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerqueti, Roy & Ciciretti, Rocco & Dalò, Ambrogio & Nicolosi, Marco, 2022. "A new measure of the resilience for networks of funds with applications to socially responsible investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    3. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    4. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    5. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    6. Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    7. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    8. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    9. Ma, A. & Mondragón, R.J., 2012. "Evaluation of network robustness using a node tearing algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6674-6681.
    10. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    11. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    12. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    13. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    14. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    15. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    16. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    17. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    18. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    19. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    20. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3260-3272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.