IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp369-379.html
   My bibliography  Save this article

A new theoretical analysis approach for a multi-agent spatial Parrondo’s game

Author

Listed:
  • Li, Yin-feng
  • Ye, Shun-qiang
  • Zheng, Kai-xuan
  • Xie, Neng-gang
  • Ye, Ye
  • Wang, Lu

Abstract

For the multi-agent spatial Parrondo’s games, the available theoretical analysis methods based on the discrete-time Markov chain were assumed that the losing and winning states of an ensemble of N players were represented to be the system states. The number of system states was 2N types. However, the theoretical calculations could not be carried out when N became much larger. In this paper, a new theoretical analysis method based on the discrete-time Markov chain is proposed. The characteristic of this approach is that the system states are described by the number of winning individuals of all the N individuals. Thus, the number of system states decreases from 2N types to N+1 types. In this study, game A and game B based on the one-dimensional line and the randomized game A+B are theoretically analyzed. Then, the corresponding transition probability matrixes, the stationary distribution probabilities and the mathematical expectations are derived. Moreover, the conditions and the parameter spaces where the strong or weak Parrondo’s paradox occurs are given. The calculation results demonstrate the feasibility of the theoretical analysis when N is larger.

Suggested Citation

  • Li, Yin-feng & Ye, Shun-qiang & Zheng, Kai-xuan & Xie, Neng-gang & Ye, Ye & Wang, Lu, 2014. "A new theoretical analysis approach for a multi-agent spatial Parrondo’s game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 369-379.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:369-379
    DOI: 10.1016/j.physa.2014.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002933
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Neng-gang & Chen, Yun & Ye, Ye & Xu, Gang & Wang, Lin-gang & Wang, Chao, 2011. "Theoretical analysis and numerical simulation of Parrondo’s paradox game in space," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 401-414.
    2. Mihailović, Zoran & Rajković, Milan, 2006. "Cooperative Parrondo's games on a two-dimensional lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 244-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Ye & Xie, Neng-gang & Wang, Lu & Cen, Yu-wan, 2013. "The multi-agent Parrondo’s model based on the network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5414-5421.
    2. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    3. Fotoohinasab, Atiyeh & Fatemizadeh, Emad & Pezeshk, Hamid & Sadeghi, Mehdi, 2018. "Denoising of genetic switches based on Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 410-420.
    4. Ye, Ye & Zhang, Xin-shi & Liu, Lin & Xie, Neng-Gang, 2021. "Effects of group interactions on the network Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Xie, Neng-gang & Chen, Yun & Ye, Ye & Xu, Gang & Wang, Lin-gang & Wang, Chao, 2011. "Theoretical analysis and numerical simulation of Parrondo’s paradox game in space," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 401-414.
    6. Xie, Neng-gang & Guo, Jia-yi & Ye, Ye & Wang, Chao & Wang, Lu, 2012. "The paradox of group behaviors based on Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6146-6155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:369-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.