IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5697-5703.html
   My bibliography  Save this article

Power-law decay of the view times of scientific courses on YouTube

Author

Listed:
  • Gao, Lingling

Abstract

The temporal power-law decay is one class of interesting decay processes, usually indicating a long-time correlation and benefiting for a system to perform functions in various time-scales. In this work, I collect the data of the view times versus lectures of some scientific courses on YouTube, according to some special principles. These data can reflect the dynamical property of the spontaneous learning behavior, influenced by the decay of learning interest. The view times versus lectures show an obviously power-law decay process. The power approximates to 1, a universal constant. This finding brings the learning process into the interesting power-law family. It will be of interest in the fields of the human dynamics, psychology and education.

Suggested Citation

  • Gao, Lingling, 2012. "Power-law decay of the view times of scientific courses on YouTube," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5697-5703.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5697-5703
    DOI: 10.1016/j.physa.2012.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112005353
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong, Nuo & Ni, Shunjiang & Shen, Shifei & Ji, Xuewei, 2016. "An understanding of human dynamics in urban subway traffic from the Maximum Entropy Principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 222-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    3. ,, 2011. "Manipulative auction design," Theoretical Economics, Econometric Society, vol. 6(2), May.
    4. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    5. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    6. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    7. Siegfried Berninghaus & Werner Güth & M. Vittoria Levati & Jianying Qiu, 2006. "Satisficing in sales competition: experimental evidence," Papers on Strategic Interaction 2006-32, Max Planck Institute of Economics, Strategic Interaction Group.
    8. Ball, Richard, 2017. "Violations of monotonicity in evolutionary models with sample-based beliefs," Economics Letters, Elsevier, vol. 152(C), pages 100-104.
    9. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    10. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    11. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    12. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    13. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    14. Alessandro Lizzeri & Marciano Siniscalchi, 2008. "Parental Guidance and Supervised Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 1161-1195.
    15. Ilya R. P. Cuypers & Youtha Cuypers & Xavier Martin, 2017. "When the target may know better: Effects of experience and information asymmetries on value from mergers and acquisitions," Strategic Management Journal, Wiley Blackwell, vol. 38(3), pages 609-625, March.
    16. Mario Gilli, 2002. "Rational Learning in Imperfect Monitoring Games," Working Papers 46, University of Milano-Bicocca, Department of Economics, revised Mar 2002.
    17. Brit Grosskopf & Ido Erev & Eldad Yechiam, 2006. "Foregone with the Wind: Indirect Payoff Information and its Implications for Choice," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(2), pages 285-302, August.
    18. Salle, Isabelle & Yildizoglu, Murat & Zumpe, Martin & Sénégas, Marc-Alexandre, 2017. "Coordination through social learning in a general equilibrium model," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 64-82.
    19. Gilles Grandjean & Ana Mauleon & Vincent Vannetelbosch, 2017. "Strongly rational sets for normal-form games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 35-46, April.
    20. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5697-5703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.