IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5557-5562.html
   My bibliography  Save this article

Interactive learning in 2×2 normal form games by neural network agents

Author

Listed:
  • Spiliopoulos, Leonidas

Abstract

This paper models the learning process of populations of randomly rematched tabula rasa neural network (NN) agents playing randomly generated 2×2 normal form games of all strategic classes. This approach has greater external validity than the existing models in the literature, each of which is usually applicable to narrow subsets of classes of games (often a single game) and/or to fixed matching protocols. The learning prowess of NNs with hidden layers was impressive as they learned to play unique pure strategy equilibria with near certainty, adhered to principles of dominance and iterated dominance, and exhibited a preference for risk-dominant equilibria. In contrast, perceptron NNs were found to perform significantly worse than hidden layer NN agents and human subjects in experimental studies.

Suggested Citation

  • Spiliopoulos, Leonidas, 2012. "Interactive learning in 2×2 normal form games by neural network agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5557-5562.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5557-5562
    DOI: 10.1016/j.physa.2012.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112005158
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 605-639.
    3. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.
    4. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    5. Cabrales, Antonio & Garcia-Fontes, Walter & Motta, Massimo, 2000. "Risk dominance selects the leader: An experimental analysis," International Journal of Industrial Organization, Elsevier, vol. 18(1), pages 137-162, January.
    6. Straub, Paul G., 1995. "Risk dominance and coordination failures in static games," The Quarterly Review of Economics and Finance, Elsevier, vol. 35(4), pages 339-363.
    7. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    8. LiCalzi Marco, 1995. "Fictitious Play by Cases," Games and Economic Behavior, Elsevier, vol. 11(1), pages 64-89, October.
    9. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    10. Sgroi, Daniel & Zizzo, Daniel John, 2009. "Learning to play 3×3 games: Neural networks as bounded-rational players," Journal of Economic Behavior & Organization, Elsevier, vol. 69(1), pages 27-38, January.
    11. Selten, Reinhard, 1998. "Features of experimentally observed bounded rationality," European Economic Review, Elsevier, vol. 42(3-5), pages 413-436, May.
    12. Sgroi, Daniel & Zizzo, Daniel J., 2007. "Neural networks and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 717-725.
    13. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    14. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliopoulos, Leonidas, 2009. "Neural networks as a learning paradigm for general normal form games," MPRA Paper 16765, University Library of Munich, Germany.
    2. Lensberg, Terje & Schenk-Hoppé, Klaus Reiner, 2021. "Cold play: Learning across bimatrix games," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 419-441.
    3. Mariano Runco, 2013. "Estimating depth of reasoning in a repeated guessing game with no feedback," Experimental Economics, Springer;Economic Science Association, vol. 16(3), pages 402-413, September.
    4. Marchiori, Davide & Di Guida, Sibilla & Polonio, Luca, 2021. "Plasticity of strategic sophistication in interactive decision-making," Journal of Economic Theory, Elsevier, vol. 196(C).
    5. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    6. repec:wyi:journl:002151 is not listed on IDEAS
    7. Wolf Ze'ev Ehrblatt & Kyle Hyndman & Erkut Y. ÄOzbay & Andrew Schotter, 2006. "Convergence: An Experimental Study," Levine's Working Paper Archive 122247000000001148, David K. Levine.
    8. Iriberri, Nagore & García-Pola, Bernardo, 2019. "Naivete and Sophistication in Initial and Repeated Play in Games," CEPR Discussion Papers 14088, C.E.P.R. Discussion Papers.
    9. Dziubiński, Marcin & Roy, Jaideep, 2012. "Popularity of reinforcement-based and belief-based learning models: An evolutionary approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 433-454.
    10. Jehiel, Philippe & Singh, Juni, 2021. "Multi-state choices with aggregate feedback on unfamiliar alternatives," Games and Economic Behavior, Elsevier, vol. 130(C), pages 1-24.
    11. Mauersberger, Felix, 2019. "Thompson Sampling: Endogenously Random Behavior in Games and Markets," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203600, Verein für Socialpolitik / German Economic Association.
    12. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    13. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    14. Ioannou, Christos A. & Romero, Julian, 2014. "A generalized approach to belief learning in repeated games," Games and Economic Behavior, Elsevier, vol. 87(C), pages 178-203.
    15. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    16. Todd Guilfoos & Andreas Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    17. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    18. Camerer, Colin F. & Ho, Teck-Hua, 2015. "Behavioral Game Theory Experiments and Modeling," Handbook of Game Theory with Economic Applications,, Elsevier.
    19. Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.
    20. ENGLE-WARNICK, Jim & McCAUSLAND, William J. & MILLER, John H., 2004. "The Ghost in the Machine: Inferring Machine-Based Strategies from Observed Behavior," Cahiers de recherche 2004-11, Universite de Montreal, Departement de sciences economiques.
    21. Antonio Cabrales & Rosemarie Nagel & Roc Armenter, 2007. "Equilibrium selection through incomplete information in coordination games: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 10(3), pages 221-234, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5557-5562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.