IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i15p2794-2802.html
   My bibliography  Save this article

Describing n-day returns with Student’s t-distributions

Author

Listed:
  • Cassidy, Daniel T.

Abstract

Prices for European call options can be calculated for returns that follow a Student’s t-distribution if the t-distribution is truncated or if the value of the asset is capped. The distributions for n-fold convolution of a Student’s t-distribution and a truncated Student’s t-distribution, both with ν=3, are considered in this work. It is shown that a truncated Student’s t-distribution under n-fold self-convolution becomes normal-like whereas a Student’s t-distribution retains the fat tails of the original distribution under n-fold self-convolution. These results can be used to explain the development of the distribution of n-day returns from a truncated Student’s t-distribution for the daily returns to normal as n increases from 1 to 10 or 100. A truncated Student’s t-distribution with 3±0.5 degrees of freedom fits the daily returns of the DJIA and S&P 500 indices.

Suggested Citation

  • Cassidy, Daniel T., 2011. "Describing n-day returns with Student’s t-distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2794-2802.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:15:p:2794-2802
    DOI: 10.1016/j.physa.2011.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111002329
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCauley, J.L. & Gunaratne, G.H. & Bassler, K.E., 2007. "Martingale option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 351-356.
    2. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. J. L. McCauley & G. H. Gunaratne & K. E. Bassler, 2006. "Martingale Option Pricing," Papers physics/0606011, arXiv.org, revised Feb 2007.
    5. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    6. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    7. Vicente, Renato & de Toledo, Charles M. & Leite, Vitor B.P. & Caticha, Nestor, 2006. "Underlying dynamics of typical fluctuations of an emerging market price index: The Heston model from minutes to months," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 272-288.
    8. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    9. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    10. Dreier, I. & Kotz, S., 2002. "A note on the characteristic function of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 221-224, April.
    11. Moriconi, L., 2007. "Delta hedged option valuation with underlying non-Gaussian returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 343-350.
    12. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    13. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Martingale option pricing," MPRA Paper 2151, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    2. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    3. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    4. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    5. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2013. "Log Student’s t -distribution-based option sensitivities: Greeks for the Gosset formulae," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1289-1302, July.
    6. Massing, Till & Ramos, Arturo, 2021. "Student’s t mixture models for stock indices. A comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    2. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    3. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2013. "Log Student’s t -distribution-based option sensitivities: Greeks for the Gosset formulae," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1289-1302, July.
    4. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2010. "Student's t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae," Papers 1003.1344, arXiv.org, revised Jul 2010.
    5. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    8. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    9. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2007. "Empirically Based Modeling in the Social Sciences and Spurious Stylized Facts," MPRA Paper 5813, University Library of Munich, Germany.
    10. McCauley, Joseph L., 2007. "Ito Processes with Finitely Many States of Memory," MPRA Paper 5811, University Library of Munich, Germany.
    11. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    12. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    13. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    14. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2008. "Empirically based modeling in financial economics and beyond, and spurious stylized facts," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 767-783, December.
    15. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, nonstationary increments, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3916-3920.
    16. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    17. McCauley, Joseph L., 2007. "Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory," MPRA Paper 2128, University Library of Munich, Germany.
    18. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, detrending data, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 202-216.
    19. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    20. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:15:p:2794-2802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.