IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0606011.html
   My bibliography  Save this paper

Martingale Option Pricing

Author

Listed:
  • J. L. McCauley
  • G. H. Gunaratne
  • K. E. Bassler

Abstract

We show that our generalization of the Black-Scholes partial differential equation (pde) for nontrivial diffusion coefficients is equivalent to a Martingale in the risk neutral discounted stock price. Previously, this was proven for the case of the Gaussian logarithmic returns model by Harrison and Kreps, but we prove it for much a much larger class of returns models where the diffusion coefficient depends on both returns x and time t. That option prices blow up if fat tails in logarithmic returns x are included in the market dynamics is also explained.

Suggested Citation

  • J. L. McCauley & G. H. Gunaratne & K. E. Bassler, 2006. "Martingale Option Pricing," Papers physics/0606011, arXiv.org, revised Feb 2007.
  • Handle: RePEc:arx:papers:physics/0606011
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0606011
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    2. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    3. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2008. "Empirically based modeling in financial economics and beyond, and spurious stylized facts," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 767-783, December.
    4. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    5. Cassidy, Daniel T., 2011. "Describing n-day returns with Student’s t-distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2794-2802.
    6. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    7. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    8. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, detrending data, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 202-216.
    9. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    10. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2013. "Log Student’s t -distribution-based option sensitivities: Greeks for the Gosset formulae," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1289-1302, July.
    11. Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2007. "Empirically Based Modeling in the Social Sciences and Spurious Stylized Facts," MPRA Paper 5813, University Library of Munich, Germany.
    12. McCauley, Joseph L., 2007. "Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory," MPRA Paper 2128, University Library of Munich, Germany.
    13. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2010. "Student's t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae," Papers 1003.1344, arXiv.org, revised Jul 2010.
    14. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    15. McCauley, Joseph L., 2007. "Ito Processes with Finitely Many States of Memory," MPRA Paper 5811, University Library of Munich, Germany.
    16. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, nonstationary increments, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3916-3920.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0606011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.