IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i3p499-508.html
   My bibliography  Save this article

Critical features in electromagnetic anomalies detected prior to the L’Aquila earthquake

Author

Listed:
  • Contoyiannis, Y.F.
  • Nomicos, C.
  • Kopanas, J.
  • Antonopoulos, G.
  • Contoyianni, L.
  • Eftaxias, K.

Abstract

Earthquakes (EQs) are large-scale fracture phenomena in the Earth’s heterogeneous crust. Fracture-induced physical fields allow a real-time monitoring of damage evolution in materials during mechanical loading. Electromagnetic (EM) emissions in a wide frequency spectrum ranging from kHz to MHz are produced by opening cracks, this can be considered as the so-called precursors of general fracture. We emphasize that the MHz radiation appears earlier than the kHz on both laboratory and geophysical scales. An important challenge in this field of research is to distinguish characteristic epochs in the evolution of precursory EM activity and identify them with the equivalent last stages in the EQ preparation process. Recently, we proposed the following two-stage model. (i) The first epoch, which includes the initial emergent MHz EM emission, is thought to be due to the fracture of a highly heterogeneous system that surrounds a family of large high-strength asperities distributed along the activated fault sustaining the system. (ii) The second epoch, which includes the emergent strong impulsive kHz EM radiation, is due to the fracture of the asperities themselves. A catastrophic EQ of magnitude Mw=6.3 occurred on 6 April, 2009 (06/04/09) in central Italy. The majority of the damage occurred in the city of L’Aquila. Clear kHz–MHz EM anomalies had been detected prior to the L’Aquila EQ. Here, we investigate the seismogenic origin of the MHz part of the anomalies. The analysis, which is in terms of intermittent dynamics of critical fluctuations, reveals that the candidate EM precursor (i) can be described as analogous to a thermal continuous phase transition and (ii) has anti-persistent behavior. These features suggest that this candidate precursor was triggered by microfractures in the highly disordered system that surrounded the backbone of asperities of the activated fault. A criterion for underlying strong critical behavior is introduced. In this field of research, reproducibility of results is desirable; and is best done by analyzing a number of precursory MHz EM emissions. We refer to previous studies of precursory MHz EM activities associated with nine significant EQs that have occurred in Greece in recent years. We conclude that all the MHz EM precursors studied, including the present one, can be described as analogous to a continuous second-order phase transition having strong criticality and anti-persistent behavior.

Suggested Citation

  • Contoyiannis, Y.F. & Nomicos, C. & Kopanas, J. & Antonopoulos, G. & Contoyianni, L. & Eftaxias, K., 2010. "Critical features in electromagnetic anomalies detected prior to the L’Aquila earthquake," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 499-508.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:499-508
    DOI: 10.1016/j.physa.2009.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008231
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
    2. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contoyiannis, Y. & Potirakis, S.M. & Eftaxias, K. & Hayakawa, M. & Schekotov, A., 2016. "Intermittent criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (MW=9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 19-28.
    2. Potirakis, Stelios M. & Contoyiannis, Yiannis & Schekotov, Alexander & Asano, Tomokazu & Hayakawa, Masashi, 2019. "Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 563-572.
    3. Vassiliki Katsika-Tsigourakou, 2012. "Comment on the “Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals”, by R. A. Grant, T. Halliday, W. P. Balderer, F. Leuenberger, M. Newcomer, G. Cyr and F. T. Fre," IJERPH, MDPI, vol. 9(7), pages 1-4, July.
    4. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eftaxias, Konstantinos & Minadakis, George & Potirakis, Stelios. M. & Balasis, Georgios, 2013. "Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 497-509.
    2. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    3. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
    4. S. Potirakis & G. Minadakis & K. Eftaxias, 2012. "Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 641-650, October.
    5. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Angulo-Brown, Fernando, 2009. "A nonlinear strategy to reveal seismic precursory signatures in earthquake-related self-potential signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2036-2040.
    7. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.
    8. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    9. Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
    10. Ioannis, Koutalonis & Filippos, Vallianatos, 2020. "Observational evidence of non-extensive behavior of seismic coda waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Potirakis, S.M. & Minadakis, G. & Eftaxias, K., 2012. "Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 300-306.
    12. Minadakis, George & Potirakis, Stylianos M. & Nomicos, Constantinos & Eftaxias, Konstantinos, 2012. "Linking electromagnetic precursors with earthquake dynamics: An approach based on nonextensive fragment and self-affine asperity models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2232-2244.
    13. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:499-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.