IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i8p1696-1705.html
   My bibliography  Save this article

Accurate estimator of correlations between asynchronous signals

Author

Listed:
  • Tóth, Bence
  • Kertész, János

Abstract

The estimation of the correlation between time series is often hampered by the asynchronicity of the signals. Cumulating data within a time window suppresses this source of noise but weakens the statistics. We present a method to estimate correlations without applying long time windows. We decompose the correlations of data cumulated over a long window using decay of lagged correlations as calculated from short window data. This increases the accuracy of the estimated correlation significantly and decreases the necessary effort of calculations both in real and computer experiments.

Suggested Citation

  • Tóth, Bence & Kertész, János, 2009. "Accurate estimator of correlations between asynchronous signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1696-1705.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1696-1705
    DOI: 10.1016/j.physa.2008.12.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108010881
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.12.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Precup, Ovidiu V. & Iori, Giulia, 2004. "A comparison of high-frequency cross-correlation measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 252-256.
    3. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 68-104.
    4. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Materassi, Donatello & Innocenti, Giacomo, 2009. "Unveiling the connectivity structure of financial networks via high-frequency analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3866-3878.
    2. Iacopo Mastromatteo & Matteo Marsili & Patrick Zoi, 2010. "Financial correlations at ultra-high frequency: theoretical models and empirical estimation," Papers 1011.1011, arXiv.org, revised Feb 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    2. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    3. Masato Ubukata & Kosuke Oya, 2007. "Test of Unbiasedness of the Integrated Covariance Estimation in the Presence of Noise," Discussion Papers in Economics and Business 07-03, Osaka University, Graduate School of Economics.
    4. S. Sanfelici & M. E. Mancino, 2008. "Covariance estimation via Fourier method in the presence of asynchronous trading and microstructure noise," Economics Department Working Papers 2008-ME01, Department of Economics, Parma University (Italy).
    5. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    6. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    7. Maria Elvira Mancino & Simona Sanfelici, 2011. "Covariance Estimation and Dynamic Asset-Allocation under Microstructure Effects via Fourier Methodology," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures, chapter 1, pages 3-32, Palgrave Macmillan.
    8. repec:hal:journl:peer-00815564 is not listed on IDEAS
    9. Taro Kanatani, 2007. "Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations," KIER Working Papers 634, Kyoto University, Institute of Economic Research.
    10. Iori, G. & Precup, O. V., 2006. "Weighted network analysis of high frequency cross-correlation measures," Working Papers 06/10, Department of Economics, City University London.
    11. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    12. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    13. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    14. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    15. Jaksa Cvitanic & Robert Liptser & Boris Rozovskii, 2005. "A filtering approach to tracking volatility from prices observed at random times," Papers math/0509503, arXiv.org.
    16. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    17. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    18. Takaki Hayashi & Shigeo Kusuoka, 2008. "Consistent estimation of covariation under nonsynchronicity," Statistical Inference for Stochastic Processes, Springer, vol. 11(1), pages 93-106, February.
    19. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
    20. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    21. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1696-1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.