IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0509503.html
   My bibliography  Save this paper

A filtering approach to tracking volatility from prices observed at random times

Author

Listed:
  • Jaksa Cvitanic
  • Robert Liptser
  • Boris Rozovskii

Abstract

This paper is concerned with nonlinear filtering of the coefficients in asset price models with stochastic volatility. More specifically, we assume that the asset price process $ S=(S_{t})_{t\geq0} $ is given by \[ dS_{t}=r(\theta_{t})S_{t}dt+v(\theta_{t})S_{t}dB_{t}, \] where $B=(B_{t})_{t\geq0}$ is a Brownian motion, $v$ is a positive function, and $\theta=(\theta_{t})_{t\geq0}$ is a c\'{a}dl\'{a}g strong Markov process. The random process $\theta$ is unobservable. We assume also that the asset price $S_{t}$ is observed only at random times $0

Suggested Citation

  • Jaksa Cvitanic & Robert Liptser & Boris Rozovskii, 2005. "A filtering approach to tracking volatility from prices observed at random times," Papers math/0509503, arXiv.org.
  • Handle: RePEc:arx:papers:math/0509503
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0509503
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
    2. Yong Zeng, 2005. "Bayesian Inference via Filtering for a Class of Counting Processes: Application to the Micromovement of Asset Price," Statistical Inference for Stochastic Processes, Springer, vol. 8(3), pages 331-354, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    2. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    3. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    4. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    5. Takaki Hayashi & Shigeo Kusuoka, 2008. "Consistent estimation of covariation under nonsynchronicity," Statistical Inference for Stochastic Processes, Springer, vol. 11(1), pages 93-106, February.
    6. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
    7. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    8. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    9. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    10. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    11. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    12. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Imma Valentina Curato, 2012. "Asymptotics for the Fourier estimators of the volatility of volatility and the leverage," Working Papers - Mathematical Economics 2012-11, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    15. Ovidiu V. Precup & Giulia Iori, 2007. "Cross-correlation Measures in the High-frequency Domain," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 319-331.
    16. Dare, Wale & Fengler, Matthias, 2017. "Global estimation of realized spot volatility in the presence of price jumps," Economics Working Paper Series 1715, University of St. Gallen, School of Economics and Political Science.
    17. Masato Ubukata & Kosuke Oya, 2007. "Test of Unbiasedness of the Integrated Covariance Estimation in the Presence of Noise," Discussion Papers in Economics and Business 07-03, Osaka University, Graduate School of Economics.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. Emilio Barucci & Paul Malliavin & Maria Elvira Mancino & Roberto Renò & Anton Thalmaier, 2003. "The Price‐Volatility Feedback Rate: An Implementable Mathematical Indicator of Market Stability," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 17-35, January.
    20. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0509503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.