IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.1011.html
   My bibliography  Save this paper

Financial correlations at ultra-high frequency: theoretical models and empirical estimation

Author

Listed:
  • Iacopo Mastromatteo
  • Matteo Marsili
  • Patrick Zoi

Abstract

A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.

Suggested Citation

  • Iacopo Mastromatteo & Matteo Marsili & Patrick Zoi, 2010. "Financial correlations at ultra-high frequency: theoretical models and empirical estimation," Papers 1011.1011, arXiv.org, revised Feb 2011.
  • Handle: RePEc:arx:papers:1011.1011
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.1011
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    3. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    4. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    5. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    6. Tóth, Bence & Kertész, János, 2009. "Accurate estimator of correlations between asynchronous signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1696-1705.
    7. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    8. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    9. Bence Toth & Balint Toth & Janos Kertesz, 2007. "Modeling the Epps effect of cross correlations in asset prices," Papers 0704.3798, arXiv.org.
    10. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    11. Tóth, Bence & Kertész, János, 2006. "Increasing market efficiency: Evolution of cross-correlations of stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 505-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andre Cardoso Barato & Iacopo Mastromatteo & Marco Bardoscia & Matteo Marsili, 2011. "Impact of meta-order in the Minority Game," Papers 1112.3908, arXiv.org, revised Nov 2012.
    2. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    3. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    4. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," Papers 2007.03453, arXiv.org, revised Sep 2020.
    5. Henryk Gurgul & Artur Machno, 2017. "The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 287-301, June.
    6. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    7. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Using the Epps effect to detect discrete processes," Papers 2005.10568, arXiv.org, revised Oct 2021.
    8. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.
    9. Chang, Patrick & Pienaar, Etienne & Gebbie, Tim, 2021. "The Epps effect under alternative sampling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    2. Jalshayin Bhachech & Arnab Chakrabarti & Taisei Kaizoji & Anindya S. Chakrabarti, 2022. "Instability of networks: effects of sampling frequency and extreme fluctuations in financial data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-14, April.
    3. Marsili, Matteo & Raffaelli, Giacomo & Ponsot, Benedicte, 2009. "Dynamic instability in generic model of multi-assets markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1170-1181, May.
    4. Sandoval, Leonidas Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Insper Working Papers wpe_319, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    5. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    6. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    7. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    8. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    9. Nicolas Huth & Frédéric Abergel, 2012. "The times change: multivariate subordination, empirical facts," Post-Print hal-00620841, HAL.
    10. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility and the GARCH forecasting performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 12(3), pages 183-200, July.
    11. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    12. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
    13. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    14. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    15. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    16. Leonidas Sandoval Junior, 2011. "Cluster formation and evolution in networks of financial market indices," Papers 1111.5069, arXiv.org.
    17. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    19. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    20. Ovidiu V. Precup & Giulia Iori, 2007. "Cross-correlation Measures in the High-frequency Domain," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 319-331.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.