IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i22p5503-5510.html
   My bibliography  Save this article

Pricing on electricity market based on coupled-continuous-time-random-walk concept

Author

Listed:
  • Broszkiewicz-Suwaj, Ewa
  • Jurlewicz, Agnieszka

Abstract

In this paper we propose a model of electricity market based on the forward rate dynamics described by a diffusion with jumps as a generalization of the classical diffusion approach. We consider jump components resulting from a coupled continuous-time random walk (CTRW) with jump lengths proportional to the corresponding inter-jump time intervals. In the framework of the model we derive a formula for the EURO-price of a standard European call option, showing applicability of CTRW processes for pricing of financial instruments. The result, obtained by an advance theory of semimartingales, is an essential extension of the pricing formula derived in the classical diffusion model of the forward rate dynamics. It indicates an influence of both, the continuous and the jump parts of the forward rate process on the option price.

Suggested Citation

  • Broszkiewicz-Suwaj, Ewa & Jurlewicz, Agnieszka, 2008. "Pricing on electricity market based on coupled-continuous-time-random-walk concept," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5503-5510.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5503-5510
    DOI: 10.1016/j.physa.2008.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108004937
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/607 is not listed on IDEAS
    2. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    3. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Janczura & Aleksander Weron, 2008. "Modelling energy forward prices," HSC Research Reports HSC/08/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    2. Weber, Florian & Schmid, Thomas & Pietz, Matthäus & Kaserer, Christoph, 2010. "Simulation-based valuation of project finance: does model complexity really matter?," CEFS Working Paper Series 2010-03, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    3. Lyle, Matthew R. & Elliott, Robert J., 2009. "A 'simple' hybrid model for power derivatives," Energy Economics, Elsevier, vol. 31(5), pages 757-767, September.
    4. Rudiger Kiesel & Gero Schindlmayr & Reik Borger, 2009. "A two-factor model for the electricity forward market," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 279-287.
    5. Magdalena Borgosz-Koczwara & Aleksander Weron & Agnieszka Wyłomańska, 2009. "Stochastic models for bidding strategies on oligopoly electricity market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 579-592, July.
    6. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, October.
    7. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    11. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    12. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    13. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    14. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    15. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    16. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Rau-Bredow, Hans, 2022. "Contango and Backwardation in Arbitrage-Free Futures-Markets," EconStor Preprints 249292, ZBW - Leibniz Information Centre for Economics.
    18. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    19. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    20. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5503-5510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.