IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i21p5197-5204.html
   My bibliography  Save this article

Wavelet multiscale analysis for Hedge Funds: Scaling and strategies

Author

Listed:
  • Conlon, T.
  • Crane, M.
  • Ruskin, H.J.

Abstract

The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons.

Suggested Citation

  • Conlon, T. & Crane, M. & Ruskin, H.J., 2008. "Wavelet multiscale analysis for Hedge Funds: Scaling and strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5197-5204.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:21:p:5197-5204
    DOI: 10.1016/j.physa.2008.05.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108005025
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.05.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    2. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Tzagkarakis & Frantz Maurer, 2020. "An energy-based measure for long-run horizon risk quantification," Annals of Operations Research, Springer, vol. 289(2), pages 363-390, June.
    2. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    3. Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
    4. Bruzda, Joanna, 2017. "Real and complex wavelets in asset classification: An application to the US stock market," Finance Research Letters, Elsevier, vol. 21(C), pages 115-125.
    5. Bruno Milani & Paulo Sérgio Ceretta, 2014. "A multiscale approach to emerging market pricing," Economics Bulletin, AccessEcon, vol. 34(2), pages 784-792.
    6. Majed S. Balalaa & Anouar Ben Mabrouk & Habiba Abdessalem, 2021. "A Wavelet-Based Method for the Impact of Social Media on the Economic Situation: The Saudi Arabia 2030-Vision Case," Mathematics, MDPI, vol. 9(10), pages 1-21, May.
    7. Hassan Farazmand & Amin Mansouri & Morteza Afghah, 2014. "Choosing the best type of wavelet: Case study-business cycle in Iran," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 4(5), pages 293-314, May.
    8. Bales, Stephan, 2022. "Sovereign and bank dependence in the eurozone: A multi-scale approach using wavelet-network analysis," International Review of Financial Analysis, Elsevier, vol. 83(C).
    9. Goodell, John W. & Corbet, Shaen & Yadav, Miklesh Prasad & Kumar, Satish & Sharma, Sudhi & Malik, Kunjana, 2022. "Time and frequency connectedness of green equity indices: Uncovering a socially important link to Bitcoin," International Review of Financial Analysis, Elsevier, vol. 84(C).
    10. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    11. Anindya Chakrabarty & Anupam De & Gautam Bandyopadhyay, 2016. "Horizon heterogeneity, institutional constraint and managerial myopia: a multi-frequency perspective on ELSS," International Journal of Business Excellence, Inderscience Enterprises Ltd, vol. 9(1), pages 18-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    2. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    3. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    4. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    5. Yushu Li & Fredrik N. G. Andersson, 2021. "A simple wavelet-based test for serial correlation in panel data models," Empirical Economics, Springer, vol. 60(5), pages 2351-2363, May.
    6. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    7. Dimitrios Panagiotou & Athanassios Stavrakoudis, 2023. "Price dependence among the major EU extra virgin olive oil markets: a time scale analysis," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 1-26, March.
    8. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    9. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    10. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    11. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    12. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    13. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    14. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    16. Asgharian, Hossein, 2011. "A conditional asset-pricing model with the optimal orthogonal portfolio," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1027-1040, May.
    17. Muhammad Zeeshan Younas, 2020. "How Did Risk Management Methods Change After The 2007 Sub-Prime Mortgage Crisis In The United Kingdom?," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 9(1), pages 22-31, March.
    18. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    19. G. Livan & S. Alfarano & E. Scalas, 2011. "The fine structure of spectral properties for random correlation matrices: an application to financial markets," Papers 1102.4076, arXiv.org.
    20. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:21:p:5197-5204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.