IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i14p3719-3728.html
   My bibliography  Save this article

Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network

Author

Listed:
  • Zheng, Yan Hong
  • Lu, Qi Shao

Abstract

The spatiotemporal patterns and chaotic burst synchronization of a small-world neuronal network are studied in this paper. The synchronization parameter, similarity parameter and order parameter are introduced to investigate the dynamics behaviour of the neurons. Chaotic burst synchronization and nearly complete synchronization can be observed if the link probability and the coupling strength are large enough. It is found that with increasing link probability and the coupling strength chaotic bursts become appreciably synchronous in space and coherent in time, and the maximal spatiotemporal order appears at some particular values of the probability and the coupling strength, respectively. The larger the size of the network, the smaller the probability and the coupling strength are needed for the network to achieve burst synchronization. Moreover, the bursting activity and the spatiotemporal patterns are robust to small noise.

Suggested Citation

  • Zheng, Yan Hong & Lu, Qi Shao, 2008. "Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3719-3728.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3719-3728
    DOI: 10.1016/j.physa.2008.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108002069
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    4. Steve Lawrence & C. Lee Giles, 1999. "Accessibility of information on the web," Nature, Nature, vol. 400(6740), pages 107-107, July.
    5. Wang, Qing Yun & Lu, Qi Shao & Guan Rong Chen,, 2007. "Ordered bursting synchronization and complex wave propagation in a ring neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 869-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yubing & Xie, Yanhang & Lin, Xiu & Hao, Yinghang & Ma, Xiaoguang, 2010. "Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 96-103.
    2. Parastesh, Fatemeh & Rajagopal, Karthikeyan & Alsaadi, Fawaz E. & Hayat, Tasawar & Pham, V.-T. & Hussain, Iqtadar, 2019. "Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 377-384.
    3. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    4. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    5. Li, Chengren & Lü, Ling & Sun, Ying & Wang, Ying & Wang, Wenjun & Sun, Ao, 2016. "Parameter identification and synchronization for uncertain network group with different structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 624-631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    2. Türker, İlker, 2018. "Generating clustered scale-free networks using Poisson based localization of edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 72-85.
    3. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    4. Gancio, Juan & Rubido, Nicolás, 2022. "Critical parameters of the synchronisation's stability for coupled maps in regular graphs," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    7. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    8. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    9. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.
    10. Egghe, Leo, 2024. "Networks and their degree distribution, leading to a new concept of small worlds," Journal of Informetrics, Elsevier, vol. 18(3).
    11. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    12. Argollo de Menezes, M & Moukarzel, C.F & Penna, T.J.P, 2001. "Geometric phase-transition on systems with sparse long-range connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 132-139.
    13. David L. Alderson, 2008. "OR FORUM---Catching the “Network Science” Bug: Insight and Opportunity for the Operations Researcher," Operations Research, INFORMS, vol. 56(5), pages 1047-1065, October.
    14. Enrique Orduna-Malea & Juan M. Ayllón & Alberto Martín-Martín & Emilio Delgado López-Cózar, 2015. "Methods for estimating the size of Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 931-949, September.
    15. Mitra, Tushar & Hassan, Md. Kamrul, 2022. "A weighted planar stochastic lattice with scale-free, small-world and multifractal properties," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    17. Wang, Li & Gong, Yubing & Lin, Xiu, 2012. "Ordered chaotic bursting and multiple coherence resonance by time-periodic coupling strength in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 131-136.
    18. Zhou, Guangye & Li, Chengren & Li, Tingting & Yang, Yi & Wang, Chen & He, Fangjun & Sun, Jingchang, 2016. "Outer synchronization investigation between WS and NW small-world networks with different node numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 506-513.
    19. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    20. Chen, Shu-Heng & Chang, Chia-Ling & Wen, Ming-Chang, 2014. "Social networks and macroeconomic stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3719-3728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.