IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v374y2007i2p611-616.html
   My bibliography  Save this article

Entanglement concentration for unknown W class states

Author

Listed:
  • Zhang, Li-Hua
  • Yang, Ming
  • Cao, Zhuo-Liang

Abstract

In this paper, we propose a theoretical entanglement concentration protocol for unknown triparticle W class states, and then the physical implementation of this proposal has also been presented in cavity QED. The general protocol is mainly based on the appropriate Bell state measurements. In the feasible physical scheme, the interaction between two driven atoms and a cavity mode is a large-detuned one, so the scheme is insensitive to both the cavity decay and the thermal field.

Suggested Citation

  • Zhang, Li-Hua & Yang, Ming & Cao, Zhuo-Liang, 2007. "Entanglement concentration for unknown W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 611-616.
  • Handle: RePEc:eee:phsmap:v:374:y:2007:i:2:p:611-616
    DOI: 10.1016/j.physa.2006.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106008363
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Ming & Song, Wei & Cao, Zhuo-Liang, 2004. "Entanglement distillation for atomic states via cavity QED," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 251-261.
    2. Takashi Yamamoto & Masato Koashi & Şahin Kaya Özdemir & Nobuyuki Imoto, 2003. "Experimental extraction of an entangled photon pair from two identically decohered pairs," Nature, Nature, vol. 421(6921), pages 343-346, January.
    3. Yang, Ming & Cao, Zhuo-Liang, 2004. "Entanglement distillation for W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 141-148.
    4. Charles H. Bennett & David P. DiVincenzo, 2000. "Quantum information and computation," Nature, Nature, vol. 404(6775), pages 247-255, March.
    5. Jian-Wei Pan & Christoph Simon & Časlav Brukner & Anton Zeilinger, 2001. "Entanglement purification for quantum communication," Nature, Nature, vol. 410(6832), pages 1067-1070, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ming & Cao, Zhuo-Liang, 2004. "Entanglement distillation for W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 141-148.
    2. Peng, Jia-yin & Liu, Miao & Yang, Zhen & Tang, Liang & Tang, Jiang-gang, 2023. "Double-direction cyclic controlled quantum communication of single-particle states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    3. Wang, Shixin & Feng, Tao, 2023. "Perfect state transfer on weighted bi-Cayley graphs over abelian groups," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Eied. M. Khalil & Abdel-Baset. A. Mohamed & Abdel-Shafy F. Obada & Hichem Eleuch, 2020. "Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    5. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    6. Costa, A.C.S. & Beims, M.W. & Angelo, R.M., 2016. "Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths a," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 469-479.
    7. Yang, Ming & Song, Wei & Cao, Zhuo-Liang, 2004. "Entanglement distillation for atomic states via cavity QED," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 251-261.
    8. Muhammad Junaid Umer & Muhammad Imran Sharif, 2022. "A Comprehensive Survey on Quantum Machine Learning and Possible Applications," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 13(5), pages 1-17, October.
    9. Seida, C. & Seddik, S. & Hassouni, Y. & Allati, A. El, 2022. "Memory effects on bidirectional teleportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Zhengmeng Xu & Yujie Wang & Xiaotong Feng & Yilin Wang & Yanli Li & Hai Lin, 2023. "Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions," Papers 2310.07427, arXiv.org, revised Dec 2023.
    11. A. Rycerz, 2006. "Entanglement and transport through correlated quantum dot," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 52(3), pages 291-296, August.
    12. Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Sağlam, Utku & Paternostro, Mauro & Müstecaplıoğlu, Özgür E., 2023. "Entanglement transfer via chiral and continuous-time quantum walks on a triangular chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    14. Khlifi, Y. & Seddik, S. & El Allati, A., 2022. "Steady state entanglement behavior between two quantum refrigerators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:374:y:2007:i:2:p:611-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.