IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i17p3601-3609.html
   My bibliography  Save this article

Quadrantal multi-scale distribution entropy analysis of heartbeat interval series based on a modified Poincaré plot

Author

Listed:
  • Huo, Chengyu
  • Huang, Xiaolin
  • Zhuang, Jianjun
  • Hou, Fengzhen
  • Ni, Huangjing
  • Ning, Xinbao

Abstract

The Poincaré plot is one of the most important approaches in human cardiac rhythm analysis. However, further investigations are still needed to concentrate on techniques that can characterize the dispersion of the points displayed by a Poincaré plot. Based on a modified Poincaré plot, we provide a novel measurement named distribution entropy (DE) and propose a quadrantal multi-scale distribution entropy analysis (QMDE) for the quantitative descriptions of the scatter distribution patterns in various regions and temporal scales. We apply this method to the heartbeat interval series derived from healthy subjects and congestive heart failure (CHF) sufferers, respectively, and find that the discriminations between them are most significant in the first quadrant, which implies significant impacts on vagal regulation brought about by CHF. We also investigate the day–night differences of young healthy people, and it is shown that the results present a clearly circadian rhythm, especially in the first quadrant. In addition, the multi-scale analysis indicates that the results of healthy subjects and CHF sufferers fluctuate in different trends with variation of the scale factor. The same phenomenon also appears in circadian rhythm investigations of young healthy subjects, which implies that the cardiac dynamic system is affected differently in various temporal scales by physiological or pathological factors.

Suggested Citation

  • Huo, Chengyu & Huang, Xiaolin & Zhuang, Jianjun & Hou, Fengzhen & Ni, Huangjing & Ning, Xinbao, 2013. "Quadrantal multi-scale distribution entropy analysis of heartbeat interval series based on a modified Poincaré plot," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3601-3609.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3601-3609
    DOI: 10.1016/j.physa.2013.03.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002860
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.03.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Fengzhen & Zhuang, Jianjun & Bian, Chunhua & Tong, Tangji & Chen, Ying & Yin, Jie & Qiu, Xiaojun & Ning, Xinbao, 2010. "Analysis of heartbeat asymmetry based on multi-scale time irreversibility test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 754-760.
    2. Ivanov, Plamen Ch. & Chen, Zhi & Hu, Kun & Eugene Stanley, H., 2004. "Multiscale aspects of cardiac control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 685-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Ioana Iconaru & Manuela Mihaela Ciucurel & Luminita Georgescu & Mariana Tudor & Constantin Ciucurel, 2021. "The Applicability of the Poincaré Plot in the Analysis of Variability of Reaction Time during Serial Testing," IJERPH, MDPI, vol. 18(7), pages 1-13, April.
    2. Han, Yun-Feng & Ren, Ying-Yu & He, Yuan-Sheng & Jin, Ning-De, 2018. "Variability analysis of droplet distribution of oil-in-water emulsions with a multi-scale first-order difference conductance series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 196-210.
    3. Zhai, Lu-Sheng & Zong, Yan-Bo & Wang, Hong-Mei & Yan, Cong & Gao, Zhong-Ke & Jin, Ning-De, 2017. "Characterization of flow pattern transitions for horizontal liquid–liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 136-147.
    4. Zhai, Lusheng & Wu, Yinglin & Yang, Jie & Xie, Hailin, 2020. "Characterizing initiation of gas–liquid churn flows using coupling analysis of multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Lin, Aijing & Shang, Pengjian, 2016. "Multifractality of stock markets based on cumulative distribution function and multiscale multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 527-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong, Lei & Shang, Pengjian, 2020. "Evaluation of missing ordinal pattern and its fractional distribution entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Yang, Xiaodong & Wang, Zhixiao & He, Aijun & Wang, Jun, 2020. "Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Rong, Lei & Shang, Pengjian, 2018. "New irreversibility measure and complexity analysis based on singular value decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 913-924.
    4. Billat, Véronique L. & Mille-Hamard, Laurence & Meyer, Yves & Wesfreid, Eva, 2009. "Detection of changes in the fractal scaling of heart rate and speed in a marathon race," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3798-3808.
    5. Yao, Wenpo & Zhang, Yuping & Wang, Jun, 2018. "Quantitative analysis in nonlinear complexity detection of meditative heartbeats," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1060-1068.
    6. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    7. Yin, Yi & Shang, Pengjian & Xia, Jianan, 2015. "Compositional segmentation of time series in the financial markets," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 399-412.
    8. Xia, Jianan & Shang, Pengjian & Lu, Dan & Yin, Yi, 2016. "A comprehensive segmentation analysis of crude oil market based on time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 104-114.
    9. Xia, Jianan & Shang, Pengjian & Wang, Jing & Shi, Wenbin, 2014. "Classifying of financial time series based on multiscale entropy and multiscale time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 151-158.
    10. Jiao, Dezhao & Wang, Zikuan & Li, Jin & Feng, Feilong & Hou, Fengzhen, 2020. "The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3601-3609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.