IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v242y1997i1p175-194.html
   My bibliography  Save this article

Modeling multi-lane traffic flow with queuing effects

Author

Listed:
  • Helbing, Dirk

Abstract

On the basis of assumptions about the behavior of driver-vehicle units concerning acceleration, deceleration, overtaking, and lane-changing maneuvers, a gas-kinetic traffic model for unidirectional multi-lane freeways is constructed. Queuing effects are explicitly taken into account in an overall manner. The resulting model is a generalization of Paveri-Fontana's Boltzmann-like traffic model and allows the derivation of macroscopic traffic equations for interacting lanes, including velocity equations. The related effective macroscopic traffic model for the total free-way cross-section is also derived. It provides corrections with respect to previous traffic models, but agrees with them in special cases.

Suggested Citation

  • Helbing, Dirk, 1997. "Modeling multi-lane traffic flow with queuing effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 175-194.
  • Handle: RePEc:eee:phsmap:v:242:y:1997:i:1:p:175-194
    DOI: 10.1016/S0378-4371(97)00183-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437197001830
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(97)00183-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. K. Munjal & L. A. Pipes, 1971. "Propagation of On-Ramp Density Waves on Uniform Unidirectional Multilane Freeways," Transportation Science, INFORMS, vol. 5(4), pages 390-402, November.
    2. Hilliges, Martin & Weidlich, Wolfgang, 1995. "A phenomenological model for dynamic traffic flow in networks," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 407-431, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    2. Lu, Jing & Osorio, Carolina, 2024. "Link transmission model: A formulation with enhanced compute time for large-scale network optimization," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    3. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    4. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    5. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2001. "Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 317-336, May.
    6. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helbing, Dirk, 1995. "Theoretical foundation of macroscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 219(3), pages 375-390.
    2. Yu (Marco) Nie & H. Michael Zhang, 2008. "Oscillatory Traffic Flow Patterns Induced by Queue Spillback in a Simple Road Network," Transportation Science, INFORMS, vol. 42(2), pages 236-248, May.
    3. Boel, René & Mihaylova, Lyudmila, 2006. "A compositional stochastic model for real time freeway traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 319-334, May.
    4. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    5. Zhao, Tingting & Nie, Yu (Marco) & Zhang, Yi, 2014. "Extended spectral envelope method for detecting and analyzing traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 1-16.
    6. Wagner, C., 1997. "A Navier-Stokes-like traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(1), pages 124-138.
    7. Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
    8. Holland, Edward N. & Woods, Andrew W., 1997. "A continuum model for the dispersion of traffic on two-lane roads," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 473-485, November.
    9. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    10. Nie, Yu (Marco), 2010. "Equilibrium analysis of macroscopic traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 62-72, January.
    11. Yanhong Wang & Rui Jiang & Yu (Marco) Nie & Ziyou Gao, 2021. "Impact of Information on Topology-Induced Traffic Oscillations," Transportation Science, INFORMS, vol. 55(2), pages 475-490, March.
    12. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:242:y:1997:i:1:p:175-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.