Transient workload distribution in the $$M/G/1$$ M / G / 1 finite-buffer queue with single and multiple vacations
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-015-1804-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jung Baek & Ho Lee & Se Lee & Soohan Ahn, 2008. "A factorization property for BMAP/G/1 vacation queues under variable service speed," Annals of Operations Research, Springer, vol. 160(1), pages 19-29, April.
- Hideaki Takagi, 1994. "M/G/1//N Queues with Server Vacations and Exhaustive Service," Operations Research, INFORMS, vol. 42(5), pages 926-939, October.
- Jung Baek & Ho Lee & Se Lee & Soohan Ahn, 2013. "A MAP-modulated fluid flow model with multiple vacations," Annals of Operations Research, Springer, vol. 202(1), pages 19-34, January.
- Wojciech Kempa, 2009. "GI/G/1/∞ batch arrival queueing system with a single exponential vacation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 81-97, March.
- Surendra Gupta & Ayse Kavusturucu, 2000. "Production systems with interruptions, arbitrary topology and finite buffers," Annals of Operations Research, Springer, vol. 93(1), pages 145-176, January.
- Merav Shomrony & Uri Yechiali, 2001. "Burst arrival queues with server vacations and random timers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(1), pages 117-146, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
- Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
- G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
- Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
- Xindan Li & Dan Tang & Yongjin Wang & Xuewei Yang, 2014. "Optimal processing rate and buffer size of a jump-diffusion processing system," Annals of Operations Research, Springer, vol. 217(1), pages 319-335, June.
- Mouloud Cherfaoui & Aicha Bareche, 2020. "An optimal approximation of the characteristics of the GI/M/1 queue with two-stage service policy," Operational Research, Springer, vol. 20(2), pages 959-983, June.
- Souvik Ghosh & A. D. Banik, 2018. "Computing conditional sojourn time of a randomly chosen tagged customer in a $$\textit{BMAP/MSP/}1$$ BMAP / MSP / 1 queue under random order service discipline," Annals of Operations Research, Springer, vol. 261(1), pages 185-206, February.
- Jung Baek & Ho Lee & Se Lee & Soohan Ahn, 2013. "A MAP-modulated fluid flow model with multiple vacations," Annals of Operations Research, Springer, vol. 202(1), pages 19-34, January.
- A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
More about this item
Keywords
Finite-buffer queue; Multiple vacation; Poisson arrivals; Single vacation; Transient distribution; Virtual waiting time;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:239:y:2016:i:2:d:10.1007_s10479-015-1804-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.