IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v130y2024icp24-37.html
   My bibliography  Save this article

A solution for abstract decision problems based on maximum flow value

Author

Listed:
  • Gori, Michele

Abstract

An abstract decision problem is an ordered pair where the first component is a nonempty and finite set of alternatives from which a society has to make a choice and the second component is an irreflexive relation on that set representing a dominance relation. A crucial problem is to find a reasonable solution that allows to select, for any given abstract decision problem, some of the alternatives. A variety of solutions have been proposed over the years. In this paper we propose a new solution, called maximum flow value set, that naturally stems from the work by Bubboloni and Gori (The flow network method, Social Choice and Welfare 51, pp. 621–656, 2018) and that is based on the concept of maximum flow value in a digraph. We analyze its properties and its relation with other solutions such as the core, the admissible set, the uncovered set, the Copeland set and the generalized stable set. We also show that the maximum flow value set allows to define a new Condorcet social choice correspondence strictly related to the Copeland social choice correspondence and fulfilling lots of desirable properties.

Suggested Citation

  • Gori, Michele, 2024. "A solution for abstract decision problems based on maximum flow value," Mathematical Social Sciences, Elsevier, vol. 130(C), pages 24-37.
  • Handle: RePEc:eee:matsoc:v:130:y:2024:i:c:p:24-37
    DOI: 10.1016/j.mathsocsci.2024.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489624000519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2024.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Gori, 2023. "Families of abstract decision problems whose admissible sets intersect in a singleton," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 131-154, July.
    2. Robert Delver & Herman Monsuur, 2001. "Stable sets and standards of behaviour," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 555-570.
    3. Kalai, Ehud & Pazner, Elisha A & Schmeidler, David, 1976. "Collective Choice Correspondences as Admissible Outcomes of Social Bargaining Processes," Econometrica, Econometric Society, vol. 44(2), pages 233-240, March.
    4. Paul B. Simpson, 1969. "On Defining Areas of Voter Choice: Professor Tullock on Stable Voting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 83(3), pages 478-490.
    5. Wesley H. Holliday & Eric Pacuit, 2020. "Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers," Papers 2004.02350, arXiv.org, revised Nov 2023.
    6. Markus Schulze, 2011. "A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 267-303, February.
    7. Aleksei Y. Kondratev & Alexander S. Nesterov, 2020. "Measuring majority power and veto power of voting rules," Public Choice, Springer, vol. 183(1), pages 187-210, April.
    8. Wesley H. Holliday & Eric Pacuit, 2023. "Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers," Public Choice, Springer, vol. 197(1), pages 1-62, October.
    9. Han, Weibin & Van Deemen, Adrian, 2016. "On the solution of w-stable sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 87-92.
    10. Josep E. Peris & BegoÓa Subiza, 1999. "Condorcet choice correspondences for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 217-231.
    11. Salvador Barberà & Walter Bossert, 2023. "Intermediate Condorcet Winners and Losers," Working Papers 1380, Barcelona School of Economics.
    12. Peris, Josep E. & Subiza, Begoña, 2013. "A reformulation of von Neumann–Morgenstern stability: m-stability," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 51-55.
    13. Daniela Bubboloni & Michele Gori, 2018. "The flow network method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(4), pages 621-656, December.
    14. Christian Klamler, 2005. "The Copeland rule and Condorcet’s principle," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(3), pages 745-749, April.
    15. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    16. Kalai, Ehud & Schmeidler, David, 1977. "An admissible set occurring in various bargaining situations," Journal of Economic Theory, Elsevier, vol. 14(2), pages 402-411, April.
    17. Felix Brandt & Hans Georg Seedig, 2016. "On the Discriminative Power of Tournament Solutions," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 53-58, Springer.
    18. Donald G. Saari & Vincent R. Merlin, 1996. "The Copeland method (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 51-76.
    19. Felix Brandt & Markus Brill & Paul Harrenstein, 2018. "Extending tournament solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 193-222, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Gori, 2023. "Families of abstract decision problems whose admissible sets intersect in a singleton," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 131-154, July.
    2. Holliday, Wesley H., 2024. "An impossibility theorem concerning positive involvement in voting," Economics Letters, Elsevier, vol. 236(C).
    3. Weibin Han & Adrian Deemen & D. Ary A. Samsura, 2016. "A note on extended stable sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(2), pages 265-275, August.
    4. Wesley H. Holliday & Eric Pacuit, 2023. "Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers," Public Choice, Springer, vol. 197(1), pages 1-62, October.
    5. Athanasios Andrikopoulos & Nikolaos Sampanis, 2024. "A topological characterization of the existence of w-stable sets," Papers 2403.04512, arXiv.org.
    6. Han, Weibin & Van Deemen, Adrian, 2016. "On the solution of w-stable sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 87-92.
    7. Wesley H. Holliday & Eric Pacuit, 2023. "Stable Voting," Constitutional Political Economy, Springer, vol. 34(3), pages 421-433, September.
    8. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    9. Martin, Mathieu & Merlin, Vincent, 2002. "The stability set as a social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 91-113, September.
    10. Wesley H. Holliday & Chase Norman & Eric Pacuit & Saam Zahedian, 2022. "Impossibility theorems involving weakenings of expansion consistency and resoluteness in voting," Papers 2208.06907, arXiv.org, revised Mar 2023.
    11. Wesley H. Holliday & Eric Pacuit, 2020. "Axioms for Defeat in Democratic Elections," Papers 2008.08451, arXiv.org, revised Oct 2023.
    12. Han, Weibin & van Deemen, Adrian, 2021. "The solution of generalized stable sets and its refinement," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 60-67.
    13. Wesley H. Holliday, 2024. "An impossibility theorem concerning positive involvement in voting," Papers 2401.05657, arXiv.org, revised Feb 2024.
    14. Wesley H. Holliday & Eric Pacuit, 2020. "Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers," Papers 2004.02350, arXiv.org, revised Nov 2023.
    15. Raúl Pérez-Fernández & Bernard De Baets, 2018. "The supercovering relation, the pairwise winner, and more missing links between Borda and Condorcet," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(2), pages 329-352, February.
    16. Aleksei Y. Kondratev & Alexander S. Nesterov, 2020. "Measuring majority power and veto power of voting rules," Public Choice, Springer, vol. 183(1), pages 187-210, April.
    17. Wesley H. Holliday & Eric Pacuit, 2021. "Measuring Violations of Positive Involvement in Voting," Papers 2106.11502, arXiv.org.
    18. Wesley H. Holliday & Eric Pacuit, 2021. "Axioms for defeat in democratic elections," Journal of Theoretical Politics, , vol. 33(4), pages 475-524, October.
    19. Felix Brandt & Chris Dong, 2022. "On Locally Rationalizable Social Choice Functions," Papers 2204.05062, arXiv.org, revised Mar 2024.
    20. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:130:y:2024:i:c:p:24-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.