IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v51y2018i4d10.1007_s00355-018-1131-7.html
   My bibliography  Save this article

The flow network method

Author

Listed:
  • Daniela Bubboloni

    (Università degli Studi di Firenze)

  • Michele Gori

    (Università degli Studi di Firenze)

Abstract

In this paper we propose an in-depth analysis of a method, called the flow network method, which associates with any network a complete and quasi-transitive binary relation on its vertices. Such a method, originally proposed by Gvozdik (Abstracts of the VI-th Moscow conference of young scientists on cybernetics and computing. Scientific Council on Cybernetics of RAS, Moscow, p 56, 1987), is based on the concept of maximum flow. Given a competition involving two or more teams, the flow network method can be used to build a relation on the set of teams which establishes, for every ordered pair of teams, if the first one did at least as good as the second one in the competition. Such a relation naturally induces procedures for ranking teams and selecting the best k teams of a competition. Those procedures are proved to satisfy many desirable properties.

Suggested Citation

  • Daniela Bubboloni & Michele Gori, 2018. "The flow network method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(4), pages 621-656, December.
  • Handle: RePEc:spr:sochwe:v:51:y:2018:i:4:d:10.1007_s00355-018-1131-7
    DOI: 10.1007/s00355-018-1131-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-018-1131-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-018-1131-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacio Palacios-Huerta & Oscar Volij, 2004. "The Measurement of Intellectual Influence," Econometrica, Econometric Society, vol. 72(3), pages 963-977, May.
    2. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    3. Mitri Kitti, 2016. "Axioms for centrality scoring with principal eigenvectors," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 639-653, March.
    4. Bubboloni, Daniela & Gori, Michele, 2016. "On the reversal bias of the Minimax social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 81(C), pages 53-61.
    5. Bubboloni, Daniela & Gori, Michele, 2016. "Resolute refinements of social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 37-49.
    6. Bubboloni, Daniela & Gori, Michele, 2015. "Symmetric majority rules," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 73-86.
    7. Markus Schulze, 2011. "A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 267-303, February.
    8. Giora Slutzki & Oscar Volij, 2005. "Ranking participants in generalized tournaments," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 255-270, June.
    9. Josep E. Peris & BegoÓa Subiza, 1999. "Condorcet choice correspondences for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 217-231.
    10. Julio González-Díaz & Ruud Hendrickx & Edwin Lohmann, 2014. "Paired comparisons analysis: an axiomatic approach to ranking methods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(1), pages 139-169, January.
    11. Bouyssou, Denis, 1992. "Ranking methods based on valued preference relations: A characterization of the net flow method," European Journal of Operational Research, Elsevier, vol. 60(1), pages 61-67, July.
    12. van den Brink, René & Gilles, Robert P., 2009. "The outflow ranking method for weighted directed graphs," European Journal of Operational Research, Elsevier, vol. 193(2), pages 484-491, March.
    13. Bhaskar Dutta & Jean-Francois Laslier, 1999. "Comparison functions and choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(4), pages 513-532.
    14. Bouyssou, D. & Perny, P., 1992. "Ranking methods for valued preference relations : A characterization of a method based on leaving and entering flows," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 186-194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    2. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    3. Michele Gori, 2023. "Families of abstract decision problems whose admissible sets intersect in a singleton," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 131-154, July.
    4. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    2. René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592181, HAL.
    3. Rene van den Brink & Agnieszka Rusinowska, "undated". "The Degree Ratio Ranking Method for Directed Networks," Tinbergen Institute Discussion Papers 19-026/II, Tinbergen Institute.
    4. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.
    5. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    6. Brink, René van den & Rusinowska, Agnieszka, 2021. "The degree ratio ranking method for directed graphs," European Journal of Operational Research, Elsevier, vol. 288(2), pages 563-575.
    7. Holliday, Wesley H., 2024. "An impossibility theorem concerning positive involvement in voting," Economics Letters, Elsevier, vol. 236(C).
    8. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    9. Demange, Gabrielle, 2017. "Mutual rankings," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 35-42.
    10. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    11. Csató, László, 2017. "European qualifiers to the 2018 FIFA World Cup can be manipulated," MPRA Paper 82652, University Library of Munich, Germany.
    12. Martin, Mathieu & Merlin, Vincent, 2002. "The stability set as a social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 91-113, September.
    13. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    14. Wesley H. Holliday & Eric Pacuit, 2020. "Axioms for Defeat in Democratic Elections," Papers 2008.08451, arXiv.org, revised Oct 2023.
    15. Gonzalez-Diaz, J. & Hendrickx, R.L.P. & Lohmann, E.R.M.A., 2011. "Paired Comparisons Analysis : An Axiomatic Approach to Rankings in Tournaments," Discussion Paper 2011-116, Tilburg University, Center for Economic Research.
    16. Wesley H. Holliday & Eric Pacuit, 2023. "Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers," Public Choice, Springer, vol. 197(1), pages 1-62, October.
    17. S. S. Dabadghao & B. Vaziri, 2022. "The predictive power of popular sports ranking methods in the NFL, NBA, and NHL," Operational Research, Springer, vol. 22(3), pages 2767-2783, July.
    18. Luis C. Dias & Humberto Rocha, 2023. "A stochastic method for exploiting outranking relations in multicriteria choice problems," Annals of Operations Research, Springer, vol. 321(1), pages 165-189, February.
    19. Lirong Xia, 2022. "Most Equitable Voting Rules," Papers 2205.14838, arXiv.org, revised Jul 2023.
    20. Julio González-Díaz & Ruud Hendrickx & Edwin Lohmann, 2014. "Paired comparisons analysis: an axiomatic approach to ranking methods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(1), pages 139-169, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:51:y:2018:i:4:d:10.1007_s00355-018-1131-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.