IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.05657.html
   My bibliography  Save this paper

An impossibility theorem concerning positive involvement in voting

Author

Listed:
  • Wesley H. Holliday

Abstract

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

Suggested Citation

  • Wesley H. Holliday, 2024. "An impossibility theorem concerning positive involvement in voting," Papers 2401.05657, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2401.05657
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.05657
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young, H. P., 1977. "Extending Condorcet's rule," Journal of Economic Theory, Elsevier, vol. 16(2), pages 335-353, December.
    2. Kramer, Gerald H., 1977. "A dynamical model of political equilibrium," Journal of Economic Theory, Elsevier, vol. 16(2), pages 310-334, December.
    3. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    4. Paul B. Simpson, 1969. "On Defining Areas of Voter Choice: Professor Tullock on Stable Voting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 83(3), pages 478-490.
    5. Markus Schulze, 2011. "A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 267-303, February.
    6. Raúl Pérez-Fernández & Bernard De Baets, 2018. "The supercovering relation, the pairwise winner, and more missing links between Borda and Condorcet," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(2), pages 329-352, February.
    7. Bhaskar Dutta & Jean-Francois Laslier, 1999. "Comparison functions and choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(4), pages 513-532.
    8. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holliday, Wesley H., 2024. "An impossibility theorem concerning positive involvement in voting," Economics Letters, Elsevier, vol. 236(C).
    2. Wesley H. Holliday & Eric Pacuit, 2023. "Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers," Public Choice, Springer, vol. 197(1), pages 1-62, October.
    3. Wesley H. Holliday & Eric Pacuit, 2021. "Axioms for defeat in democratic elections," Journal of Theoretical Politics, , vol. 33(4), pages 475-524, October.
    4. Wesley H. Holliday & Eric Pacuit, 2020. "Axioms for Defeat in Democratic Elections," Papers 2008.08451, arXiv.org, revised Oct 2023.
    5. Aleksei Y. Kondratev & Alexander S. Nesterov, 2020. "Measuring majority power and veto power of voting rules," Public Choice, Springer, vol. 183(1), pages 187-210, April.
    6. Wesley H. Holliday & Eric Pacuit, 2021. "Measuring Violations of Positive Involvement in Voting," Papers 2106.11502, arXiv.org.
    7. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    8. Martin, Mathieu & Merlin, Vincent, 2002. "The stability set as a social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 91-113, September.
    9. Wesley H. Holliday & Chase Norman & Eric Pacuit & Saam Zahedian, 2022. "Impossibility theorems involving weakenings of expansion consistency and resoluteness in voting," Papers 2208.06907, arXiv.org, revised Mar 2023.
    10. Kamwa, Eric, 2017. "On stable rules for selecting committees," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 36-44.
    11. Wesley H. Holliday & Eric Pacuit, 2020. "Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers," Papers 2004.02350, arXiv.org, revised Nov 2023.
    12. Wesley H. Holliday & Eric Pacuit, 2023. "An extension of May's Theorem to three alternatives: axiomatizing Minimax voting," Papers 2312.14256, arXiv.org, revised Jul 2024.
    13. Aleksei Yu. Kondratev & Alexander S. Nesterov, 2018. "Measuring Majority Tyranny: Axiomatic Approach," HSE Working papers WP BRP 194/EC/2018, National Research University Higher School of Economics.
    14. Matthew Harrison-Trainor, 2020. "An Analysis of Random Elections with Large Numbers of Voters," Papers 2009.02979, arXiv.org.
    15. Dan Felsenthal & Nicolaus Tideman, 2014. "Weak Condorcet winner(s) revisited," Public Choice, Springer, vol. 160(3), pages 313-326, September.
    16. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    17. Dan S. Felsenthal & Hannu Nurmi, 2016. "Two types of participation failure under nine voting methods in variable electorates," Public Choice, Springer, vol. 168(1), pages 115-135, July.
    18. Richard B. Darlington, 2023. "The case for minimax-TD," Constitutional Political Economy, Springer, vol. 34(3), pages 410-420, September.
    19. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    20. Green-Armytage, James, 2011. "Strategic voting and nomination," MPRA Paper 32200, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.05657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.