IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v55y2014icp4-10.html
   My bibliography  Save this article

Cooperative equilibria of finite games with incomplete information

Author

Listed:
  • Noguchi, Mitsunori

Abstract

Recently, Askoura et al. (2013) proved the nonemptiness of the α-core of a finite Bayesian game GR with Young measure strategies and nonatomic type spaces, without requiring that the expected payoffs be concave. Under the same hypotheses as theirs, we demonstrate that Scarf’s method (1971) works with some adjustments to prove the nonemptiness of the α-core of a similar game GM with pure strategies. We prove that the nonemptiness of the α-core of a GM is equivalent to that of its associated characteristic form game GMC, that the core of GMC and hence the α-core of a GM is nonempty, and that the nonemptiness of the α-core of a GM is equivalent to that of a GR, which clearly implies the result of Askoura et al. (2013). Our proofs hinge on an iterated version of Lyapunov’s theorem for Young measures to purify partially as well as fully Young measure strategies in an expected payoff function, which is a main methodological contribution of this paper.

Suggested Citation

  • Noguchi, Mitsunori, 2014. "Cooperative equilibria of finite games with incomplete information," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 4-10.
  • Handle: RePEc:eee:mateco:v:55:y:2014:i:c:p:4-10
    DOI: 10.1016/j.jmateco.2014.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406814001165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2014.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarf, Herbert E., 1971. "On the existence of a coopertive solution for a general class of N-person games," Journal of Economic Theory, Elsevier, vol. 3(2), pages 169-181, June.
    2. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    3. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    4. Myerson, Roger B., 2007. "Virtual utility and the core for games with incomplete information," Journal of Economic Theory, Elsevier, vol. 136(1), pages 260-285, September.
    5. Askoura, Y. & Sbihi, M. & Tikobaini, H., 2013. "The ex ante α-core for normal form games with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 157-162.
    6. Erik J. Balder, 1988. "Generalized Equilibrium Results for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 265-276, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhe, 2017. "Some infinite-player generalizations of Scarf’s theorem: Finite-coalition α-cores and weak α-cores," Journal of Mathematical Economics, Elsevier, vol. 73(C), pages 81-85.
    2. Zhe Yang & Haiqun Zhang, 2019. "NTU core, TU core and strong equilibria of coalitional population games with infinitely many pure strategies," Theory and Decision, Springer, vol. 87(2), pages 155-170, September.
    3. Noguchi, Mitsunori, 2021. "Essential stability of the alpha cores of finite games with incomplete information," Mathematical Social Sciences, Elsevier, vol. 110(C), pages 34-43.
    4. Yang, Zhe & Song, Qingping, 2022. "A weak α-core existence theorem of generalized games with infinitely many players and pseudo-utilities," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 40-46.
    5. Yang, Zhe, 2018. "Some generalizations of Kajii’s theorem to games with infinitely many players," Journal of Mathematical Economics, Elsevier, vol. 76(C), pages 131-135.
    6. Yang, Zhe & Zhang, Xian, 2021. "A weak α-core existence theorem of games with nonordered preferences and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    7. Yang, Zhe & Yuan, George Xianzhi, 2019. "Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 94-100.
    8. Yang, Zhe, 2020. "The weak α-core of exchange economies with a continuum of players and pseudo-utilities," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 43-50.
    9. Noguchi, Mitsunori, 2018. "Alpha cores of games with nonatomic asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 1-12.
    10. Askoura, Y., 2015. "An interim core for normal form games and exchange economies with incomplete information," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 38-45.
    11. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    12. Youcef Askoura, 2019. "An interim core for normal form games and exchange economies with incomplete information: a correction," Papers 1903.09867, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askoura, Y. & Sbihi, M. & Tikobaini, H., 2013. "The ex ante α-core for normal form games with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 157-162.
    2. Noguchi, Mitsunori, 2018. "Alpha cores of games with nonatomic asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 1-12.
    3. He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
    4. Hanjoon Michael Jung, 2020. "Perfect regular equilibrium," International Journal of Economic Theory, The International Society for Economic Theory, vol. 16(4), pages 380-398, December.
    5. Noguchi, Mitsunori, 2021. "Essential stability of the alpha cores of finite games with incomplete information," Mathematical Social Sciences, Elsevier, vol. 110(C), pages 34-43.
    6. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2016. "Savage games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    7. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    8. Askoura, Y., 2015. "An interim core for normal form games and exchange economies with incomplete information," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 38-45.
    9. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    10. Eric J. Hoffmann & Tarun Sabarwal, 2019. "Equilibrium existence in global games with general payoff structures," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 105-115, May.
    11. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2016. "Behavioral perfect equilibrium in Bayesian games," Games and Economic Behavior, Elsevier, vol. 98(C), pages 78-109.
    12. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.
    13. Milchtaich, Igal, 2004. "Random-player games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 353-388, May.
    14. , & ,, 2017. "Bayesian games with a continuum of states," Theoretical Economics, Econometric Society, vol. 12(3), September.
    15. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    16. Einy, Ezra & Haimanko, Ori, 2020. "Equilibrium existence in games with a concave Bayesian potential," Games and Economic Behavior, Elsevier, vol. 123(C), pages 288-294.
    17. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
    18. Yuhki Hosoya & Chaowen Yu, 2022. "On the approximate purification of mixed strategies in games with infinite action sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 69-93, May.
    19. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    20. Yang, Zhe & Zhang, Xian, 2021. "A weak α-core existence theorem of games with nonordered preferences and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:55:y:2014:i:c:p:4-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.