IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2011i3p450-459.html
   My bibliography  Save this article

Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process

Author

Listed:
  • Heikkinen, M.
  • Poutiainen, H.
  • Liukkonen, M.
  • Heikkinen, T.
  • Hiltunen, Y.

Abstract

This paper presents an overview of an analysis method based on self-organizing maps (SOM) which was applied to an activated sludge treatment process in a pulp mill. The aim of the study was to determine whether the neural network modeling method could be a useful and time-saving way to analyze this kind of process data. The following analysis procedure was used. At first, the process data was modeled using the SOM algorithm. Next, the reference vectors of the map were classified by K-means algorithm into clusters, which represented different states of the process. At the final stage, the reference vectors of the map and the centre vectors of the clusters were used for subtraction analysis to indicate differences of the process states. The results show that the method presented here can be an efficient way to analyze the data of an activated sludge treatment process.

Suggested Citation

  • Heikkinen, M. & Poutiainen, H. & Liukkonen, M. & Heikkinen, T. & Hiltunen, Y., 2011. "Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(3), pages 450-459.
  • Handle: RePEc:eee:matcom:v:82:y:2011:i:3:p:450-459
    DOI: 10.1016/j.matcom.2010.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410003289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Räsänen, Teemu & Ruuskanen, Juhani & Kolehmainen, Mikko, 2008. "Reducing energy consumption by using self-organizing maps to create more personalized electricity use information," Applied Energy, Elsevier, vol. 85(9), pages 830-840, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
    2. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    3. Liukkonen, M. & Hiltunen, T., 2014. "Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)," Energy, Elsevier, vol. 73(C), pages 443-452.
    4. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    5. Petricli, Gulcan & Inkaya, Tulin & Gokay Emel, Gul, 2024. "Identifying green citizen typologies by mining household-level survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    7. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    8. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    9. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    10. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    12. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    13. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    14. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    15. Mahmoud, Mohamed A. & Alajmi, Ali F., 2010. "Quantitative assessment of energy conservation due to public awareness campaigns using neural networks," Applied Energy, Elsevier, vol. 87(1), pages 220-228, January.
    16. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    17. Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
    18. Eunjung Lee & Jinho Kim & Dongsik Jang, 2020. "Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study," Energies, MDPI, vol. 13(6), pages 1-18, March.
    19. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
    20. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2011:i:3:p:450-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.