IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v78y2008i2p351-356.html
   My bibliography  Save this article

Detecting multiple mean breaks at unknown points in official time series

Author

Listed:
  • Cappelli, Carmela
  • Penny, Richard N.
  • Rea, William S.
  • Reale, Marco

Abstract

In this paper, we propose a computationally effective approach to detect multiple structural breaks in the mean occurring at unknown dates. We present a non-parametric approach that exploits, in the framework of least squares regression trees, the contiguity property of data generating processes in time series data. The proposed approach is applied first to simulated data and then to the Quarterly Gross Domestic Product in New Zealand to assess some of anomalous observations indicated by the seasonal adjustment procedure implemented in X12-ARIMA are actually structural breaks.

Suggested Citation

  • Cappelli, Carmela & Penny, Richard N. & Rea, William S. & Reale, Marco, 2008. "Detecting multiple mean breaks at unknown points in official time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 351-356.
  • Handle: RePEc:eee:matcom:v:78:y:2008:i:2:p:351-356
    DOI: 10.1016/j.matcom.2008.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408000475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    4. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    5. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Ruibing & Tian, Zheng & Jin, Hao & Zhang, Xiaowei, 2010. "Strong convergence rate of robust estimator of change point," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2026-2032.
    2. Lu, Huidi & van der Lans, Ralf & Helsen, Kristiaan & Gauri, Dinesh K., 2023. "DEPART: Decomposing prices using atheoretical regression trees," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 781-800.
    3. Carmela Cappelli & Francesca Iorio & Angela Maddaloni & Pierpaolo D’Urso, 2021. "Atheoretical Regression Trees for classifying risky financial institutions," Annals of Operations Research, Springer, vol. 299(1), pages 1357-1377, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Siranova & Menbere Workie Tiruneh, 2016. "The determinants of errors and omissions in a small and open economy: The case of Slovakia," Working Papers wp73, Institute of Economic Research, Slovak Academy of Sciences, revised 08 Apr 2016.
    2. Ramzi Issa & Robert Lafrance & John Murray, 2008. "The turning black tide: energy prices and the Canadian dollar," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(3), pages 737-759, August.
    3. Lan-Fen Chu & Michael McAleer & Chi-Chung Chen, 2012. "How Volatile is ENSO for Global Greenhouse Gas Emissions and the Global Economy?," Journal of Reviews on Global Economics, Lifescience Global, vol. 1, pages 1-12.
    4. Kraft, Kornelius & Lammers, Alexander, 2021. "Bargaining Power and the Labor Share - a Structural Break Approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242342, Verein für Socialpolitik / German Economic Association.
    5. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    6. Hervé Le Bihan, 2004. "Tests de rupture : une application au PIB tendanciel français," Economie & Prévision, La Documentation Française, vol. 163(2), pages 133-154.
    7. Thomas Windberger & Achim Zeileis, 2011. "Structural Breaks in Inflation Dynamics within the European Monetary Union," Working Papers 2011-12, Faculty of Economics and Statistics, Universität Innsbruck.
    8. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    9. Michail, Nektarios A. & Melas, Konstantinos D. & Cleanthous, Lena, 2022. "The relationship between shipping freight rates and inflation in the Euro Area," International Economics, Elsevier, vol. 172(C), pages 40-49.
    10. LanFen Chu & Michael McAleer & Chi-Chung Chen, 2009. "How Volatile is ENSO?," CIRJE F-Series CIRJE-F-635, CIRJE, Faculty of Economics, University of Tokyo.
    11. J. Hoyo & G. Llorente & C. Rivero, 2019. "Testing for Constant Parameters in Nonlinear Models: A Quick Procedure with an Empirical Illustration," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 113-137, June.
    12. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    13. Maria Heracleous & Andreas Koutris & Aris Spanos, 2006. "Testing for Structural Breaks and other forms of Non-stationarity: a Misspecification Perspective," Computing in Economics and Finance 2006 493, Society for Computational Economics.
    14. Bruinshoofd, W.A. & Candelon, B. & Raabe, K., 2005. "Banking sector strength and the transmission of currency crises," Research Memorandum 022, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    15. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    16. Pavel Kotyza & Katarzyna Czech & Michał Wielechowski & Luboš Smutka & Petr Procházka, 2021. "Sugar Prices vs. Financial Market Uncertainty in the Time of Crisis: Does COVID-19 Induce Structural Changes in the Relationship?," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    17. Bertrand Candelon & Gianluca Cubadda, 2006. "Testing for Parameter Stability in Dynamic Models across Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 741-760, December.
    18. Czech, Katarzyna, 2016. "Structural Changes in Wheat Market," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 16(31), pages 1-7, December.
    19. Rolando F. Peláez, 2018. "Improving the usefulness of the Purchasing Managers’ Index," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 53(4), pages 195-201, October.
    20. Kyriaki Begiazi & Paraskevi Katsiampa, 2019. "Modelling UK House Prices with Structural Breaks and Conditional Variance Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 58(2), pages 290-309, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:78:y:2008:i:2:p:351-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.