IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v74y2007i6p443-453.html
   My bibliography  Save this article

The mixed trunsored model with applications to SARS

Author

Listed:
  • Hirose, Hideo

Abstract

The trunsored model, which is a new incomplete data model regarded as a unified model of the censored and truncated models in lifetime analysis, can not only estimate the ratio of the fragile population to the mixed fragile and durable populations or the cured and fatal mixed populations, but also test a hypothesis that the ratio is equal to a prescribed value with ease.

Suggested Citation

  • Hirose, Hideo, 2007. "The mixed trunsored model with applications to SARS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(6), pages 443-453.
  • Handle: RePEc:eee:matcom:v:74:y:2007:i:6:p:443-453
    DOI: 10.1016/j.matcom.2006.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475406002151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2006.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Wing-Keung & Bian, Guorui, 2005. "Estimating parameters in autoregressive models with asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 61-70, January.
    2. Sun, Liuquan & Zhou, Xian, 2001. "Survival function and density estimation for truncated dependent data," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 47-57, March.
    3. H. Vu & R. Maller & X. Zhou, 1998. "Asymptotic Properties of a Class of Mixture Models for Failure Data: The Interior and Boundary Cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 627-653, December.
    4. Hirose, Hideo, 2000. "Maximum likelihood parameter estimation by model augmentation with applications to the extended four-parameter generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 81-97.
    5. Hirose, Hideo, 1995. "Maximum likelihood parameter estimation in the three-parameter gamma distribution," Computational Statistics & Data Analysis, Elsevier, vol. 20(4), pages 343-354, October.
    6. Hirose, Hideo, 1997. "Maximum likelihood parameter estimation in the three-parameter log-normal distribution using the continuation method," Computational Statistics & Data Analysis, Elsevier, vol. 24(2), pages 139-152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.
    2. Han, Lili & Wu, Fangxiang & Sheng, Jie & Ding, Feng, 2012. "Two recursive least squares parameter estimation algorithms for multirate multiple-input systems by using the auxiliary model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 777-789.
    3. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    4. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    5. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    6. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    7. W. Wong & R. Chan, 2008. "Prospect and Markowitz stochastic dominance," Annals of Finance, Springer, vol. 4(1), pages 105-129, January.
    8. Vera, J. Fernando & Di­az-Garci­a, Jose A., 2008. "A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5055-5065, August.
    9. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    10. GUORUI BIAN & MICHAEL McALEER & WING-KEUNG WONG, 2013. "Robust Estimation And Forecasting Of The Capital Asset Pricing Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-18.
    11. Suvra Pal & Hongbo Yu & Zachary D. Loucks & Ian M. Harris, 2020. "Illustration of the Flexibility of Generalized Gamma Distribution in Modeling Right Censored Survival Data: Analysis of Two Cancer Datasets," Annals of Data Science, Springer, vol. 7(1), pages 77-90, March.
    12. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    13. Akkaya, Aysen D. & Tiku, Moti L., 2008. "Estimating parameters in autoregressive models with asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2916-2916, December.
    14. Yushan Cheng & Yongchang Hui & Michael McAleer & Wing-Keung Wong, 2021. "Spurious Relationships for Nearly Non-Stationary Series," JRFM, MDPI, vol. 14(8), pages 1-24, August.
    15. Chen, Feiyan & Ding, Feng & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Data filtering based multi-innovation extended gradient method for controlled autoregressive autoregressive moving average systems using the maximum likelihood principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 53-67.
    16. Anevski, Dragi, 2017. "Functional central limit theorems for the Nelson–Aalen and Kaplan–Meier estimators for dependent stationary data," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 83-91.
    17. P.R. Madhusoodanan & Hareesh V. Kumar, 2008. "An Empirical Verification of Cointegration and Causality in Indian Stock Markets," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 9(1), pages 159-172, June.
    18. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    19. Hirose, Hideo, 2000. "Maximum likelihood parameter estimation by model augmentation with applications to the extended four-parameter generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 81-97.
    20. Yilmaz, Hulya & Sazak, Hakan S., 2014. "Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 18-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:74:y:2007:i:6:p:443-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.