IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp195-215.html
   My bibliography  Save this article

Event-triggered adaptive tracking for constrained multi-agent systems with saturated inputs and actuator faults

Author

Listed:
  • Tan, Yunshun
  • Yu, Hui

Abstract

An fault-tolerant tracking control of uncertain nonlinear multi-agent systems with state constraints and input saturation is investigated. A saturated controller is processed by converting the saturation function into a linear form of the control input. The uncertain nonlinear dynamics are approximated by fuzzy logic systems and the unknown parameters are estimated by adaptive laws. By utilizing the nonlinear state-dependent function, the constrained system is converted into the unconstrained one. An adaptive distributed event-triggered control mechanism for consensus tracking is developed utilizing the backstepping approach. By stability analysis, it is ensured that all system signals are bounded, consensus tracking can be achieved with bounded errors, and no Zeno behavior happens. Finally, simulation is done to validate the theoretical results.

Suggested Citation

  • Tan, Yunshun & Yu, Hui, 2024. "Event-triggered adaptive tracking for constrained multi-agent systems with saturated inputs and actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 195-215.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:195-215
    DOI: 10.1016/j.matcom.2024.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Wanli & He, Wennuo & Shi, Lili & Sun, Wen & Lu, Xiaoqing, 2021. "Fixed-time consensus tracking for nonlinear stochastically disturbed multi-agent systems via discontinuous protocols," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    2. Zhang, Yanhui & Liang, Hongjing & Ma, Hui & Zhou, Qi & Yu, Zhandong, 2018. "Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    2. Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    3. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    4. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Cui, Lili & Zhang, Yong & Wang, Xiaowei & Xie, Xiangpeng, 2021. "Event-triggered distributed self-learning robust tracking control for uncertain nonlinear interconnected systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    6. Xiao, Wenbin & Cao, Liang & Dong, Guowei & Zhou, Qi, 2019. "Adaptive fuzzy control for pure-feedback systems with full state constraints and unknown nonlinear dead zone," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 354-371.
    7. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    8. Gao, Shuo & Wen, Guoguang & Zhai, Xiaoqin & Zheng, Peng, 2023. "Finite-/fixed-time bipartite consensus for first-order multi-agent systems via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    9. Fu, Yingying & Li, Jing & Li, Xiaobo & Wu, Shuiyan, 2023. "Dynamic event-triggered adaptive control for uncertain stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    10. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.
    11. Wang, Boyu & Zhang, Yijun & Wei, Miao, 2023. "Fixed-time leader-following consensus of multi-agent systems with intermittent control," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    12. Feng, Hongyan & Xu, Huiling & Xu, Shengyuan & Chen, Weimin, 2019. "Model reference tracking control for spatially interconnected discrete-time systems with interconnected chains," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 50-62.
    13. Basheer, Ambreen & Rehan, Muhammad & Tufail, Muhammad & Razaq, Muhammad Ahsan, 2021. "A novel approach for adaptive H∞ leader-following consensus of higher-order locally Lipschitz multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Xin, Li-Ping & Yu, Bo & Zhao, Lin & Yu, Jinpeng, 2020. "Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    15. Ma, Jiali & Park, Ju H. & Xu, Shengyuan & Cui, Guozeng & Yang, Zhichun, 2020. "Command-filter-based adaptive tracking control for nonlinear systems with unknown input quantization and mismatching disturbances," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    16. Li, Jingwang & An, Qing & Su, Housheng, 2023. "Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:195-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.