IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp1124-1153.html
   My bibliography  Save this article

EWSO: Boosting White Shark Optimizer for solving engineering design and combinatorial problems

Author

Listed:
  • Houssein, Essam H.
  • Saeed, Mahmoud Khalaf
  • Al-Sayed, Mustafa M.

Abstract

Population-based meta-heuristic algorithms are crucial for solving optimization issues. One of these recent algorithms that is now believed to be promising metaheuristic algorithm is the White Shark Optimizer (WSO). Although it has produced a number of encouraging results, it has some certain downsides like other metaheuristic algorithms (MAs). Dropping into the local minimum optima and local solution zones, the uneven distribution of exploration and exploitation abilities, and the slow rate of convergence are some of these downsides. To fight those, two efficient mechanisms, i.e., Enhanced Solution Quality (ESQ) and Orthogonal Learning (OL), have been applied to develop an enhanced version of WSO called EWSO. The effectiveness of EWSO has been comprehensively evaluated using the IEEE CEC’2022 test suite. For further verification and achieving the principle of generality, the proposed algorithm has been used to provide good solutions for three engineering design issues (i.e., Gear train, Vertical deflection of an I beam, and the piston lever), for further applicability it has also been employed to solve two combinatorial optimization problems (i.e., bin packing problem (BPP) and quadratic assignment problems (QAP)). This effectiveness has been evaluated compared to the most recent and common metaheuristics, i.e., Kepler Optimization Algorithm (KOA), Seagull Optimization Algorithm (SOA), Spider Wasp Optimizer (SWO), and some well-known metaheuristic algorithms such as; Sine cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Trees Social Relations Optimization (TSR), in addition to the original SWO. The experimental results and statistical measures confirm the effectiveness and reliability of the proposed algorithm (EWSO) in tackling real-world issues. It is able to overcome the previous drawbacks by providing the global optimum and preventing premature convergence through an increase in population diversity.

Suggested Citation

  • Houssein, Essam H. & Saeed, Mahmoud Khalaf & Al-Sayed, Mustafa M., 2024. "EWSO: Boosting White Shark Optimizer for solving engineering design and combinatorial problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1124-1153.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:1124-1153
    DOI: 10.1016/j.matcom.2023.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Essam H. Houssein & Awny Sayed, 2023. "Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Alimoradi, Mahmoud & Azgomi, Hossein & Asghari, Ali, 2022. "Trees Social Relations Optimization Algorithm: A new Swarm-Based metaheuristic technique to solve continuous and discrete optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 629-664.
    3. Ming-Hua Lin & Jung-Fa Tsai & Chian-Son Yu, 2012. "A Review of Deterministic Optimization Methods in Engineering and Management," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-15, June.
    4. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    2. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
    3. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    4. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    5. Qingzheng Xu & Na Wang & Lei Wang & Wei Li & Qian Sun, 2021. "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review," Mathematics, MDPI, vol. 9(8), pages 1-44, April.
    6. Yunpeng Sun & Ruoya Jia & Asif Razzaq & Qun Bao, 2023. "RETRACTED ARTICLE: Drivers of China’s geographical renewable energy development: evidence from spatial association network structure approaches," Economic Change and Restructuring, Springer, vol. 56(6), pages 4115-4163, December.
    7. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Michael J. Brusco & Douglas Steinley & Ashley L. Watts, 2022. "Disentangling relationships in symptom networks using matrix permutation methods," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 133-155, March.
    9. Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
    10. Chiang, Wen-Chyuan & Kouvelis, Panagiotis & Urban, Timothy L., 2006. "Single- and multi-objective facility layout with workflow interference considerations," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1414-1426, November.
    11. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    12. Kazuhiro Tsuchiya & Sunil Bharitkar & Yoshiyasu Takefuji, 1996. "A neural network approach to facility layout problems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 556-563, March.
    13. Arora, Shalini & Puri, M. C., 1998. "A variant of time minimizing assignment problem," European Journal of Operational Research, Elsevier, vol. 110(2), pages 314-325, October.
    14. Jerzy Grobelny & Rafal Michalski, 2016. "A concept of a flexible approach to the facilities layout problems in logistics systems," WORking papers in Management Science (WORMS) WORMS/16/11, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    15. Punnen, Abraham P. & Wang, Yang, 2016. "The bipartite quadratic assignment problem and extensions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 715-725.
    16. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    17. Gerald Y. Agbegha & Ronald H. Ballou & Kamlesh Mathur, 1998. "Optimizing Auto-Carrier Loading," Transportation Science, INFORMS, vol. 32(2), pages 174-188, May.
    18. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    19. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    20. Kim, J. -Y. & Kim, Y. -D., 1995. "Graph theoretic heuristics for unequal-sized facility layout problems," Omega, Elsevier, vol. 23(4), pages 391-401, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:1124-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.