IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics096007792030713x.html
   My bibliography  Save this article

A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function

Author

Listed:
  • Yao, Kui
  • Chen, Haotian
  • Peng, W.L.
  • Wang, Zekun
  • Yao, Jia
  • Wu, Yipeng

Abstract

A new method is applied to calculating fractal dimensions of fractional calculus of some fractal functions, by this method, we obtain Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function.

Suggested Citation

  • Yao, Kui & Chen, Haotian & Peng, W.L. & Wang, Zekun & Yao, Jia & Wu, Yipeng, 2021. "A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s096007792030713x
    DOI: 10.1016/j.chaos.2020.110317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030713X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, K. & Liang, Y.S. & Zhang, F., 2009. "On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2538-2545.
    2. Ri, Mi-Gyong & Yun, Chol-Hui, 2020. "Riemann Liouville fractional integral of hidden variable fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Yun, CholHui & Ri, MiGyong, 2020. "Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Liang, Yongshun, 2009. "On the fractional calculus of Besicovitch function," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2741-2747.
    5. Yao, K. & Liang, Y.S. & Fang, J.X., 2008. "The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 106-115.
    6. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhiwei & Wang, Jianjian & Yuan, Meng & Wang, Zhongyu & Feng, Pingfa & Feng, Feng, 2022. "An indicator to quantify the complexity of signals and surfaces based on scaling behaviors transcending fractal," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Feng Feng & Meng Yuan & Yousheng Xia & Haoming Xu & Pingfa Feng & Xinghui Li, 2022. "Roughness Scaling Extraction Accelerated by Dichotomy-Binary Strategy and Its Application to Milling Vibration Signal," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    3. Karimui, Reza Yaghoobi, 2021. "A new approach to measure the fractal dimension of a trajectory in the high-dimensional phase space," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, K. & Liang, Y.S. & Zhang, F., 2009. "On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2538-2545.
    2. Chandra, Subhash & Abbas, Syed, 2022. "Fractal dimensions of mixed Katugampola fractional integral associated with vector valued functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Liang, Yongshun, 2009. "On the fractional calculus of Besicovitch function," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2741-2747.
    4. Ri, SongIl, 2021. "A remarkable fact for the box dimensions of fractal interpolation curves of R3," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Agathiyan, A. & Gowrisankar, A. & Fataf, Nur Aisyah Abdul, 2024. "On the integral transform of fractal interpolation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 209-224.
    6. Ri, Mi-Gyong & Yun, Chol-Hui & Kim, Myong-Hun, 2021. "Construction of cubic spline hidden variable recurrent fractal interpolation function and its fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Ri, Mi-Gyong & Yun, Chol-Hui, 2020. "Riemann Liouville fractional integral of hidden variable fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    9. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    10. Brechtl, Jamieson & Xie, Xie & Liaw, Peter K. & Zinkle, Steven J., 2018. "Complexity modeling and analysis of chaos and other fluctuating phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 166-175.
    11. Yao, K. & Liang, Y.S. & Fang, J.X., 2008. "The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 106-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s096007792030713x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.