IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v31y2023i05ns0218348x2350041x.html
   My bibliography  Save this article

Construction Of New Affine And Non-Affine Fractal Interpolation Functions Through The Weyl–Marchaud Derivative

Author

Listed:
  • T. M. C. PRIYANKA

    (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • A. GOWRISANKAR

    (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

Abstract

This paper investigates the Weyl–Marchaud fractional derivative of affine and non-affine fractal interpolation functions with function scaling factors. The dependence of fractal interpolation function on the scaling factor is mainly explored by choosing the scaling factor as a function instead of a constant. In addition, for some fixed order v, the Weyl–Marchaud fractional derivative of a linear fractal interpolation function is estimated by predefining the fractional derivative values at the end points. Similarly, the Weyl–Marchaud fractional derivative of a α-fractal function is investigated for some fixed order v with additional constraints on the derivative of prescribed continuous function and base function.

Suggested Citation

  • T. M. C. Priyanka & A. Gowrisankar, 2023. "Construction Of New Affine And Non-Affine Fractal Interpolation Functions Through The Weyl–Marchaud Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-15.
  • Handle: RePEc:wsi:fracta:v:31:y:2023:i:05:n:s0218348x2350041x
    DOI: 10.1142/S0218348X2350041X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X2350041X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X2350041X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agathiyan, A. & Gowrisankar, A. & Fataf, Nur Aisyah Abdul, 2024. "On the integral transform of fractal interpolation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 209-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:31:y:2023:i:05:n:s0218348x2350041x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.