IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v29y2018i01ns012918311850002x.html
   My bibliography  Save this article

Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs

Author

Listed:
  • J. M. Franco

    (IUMA, Departamento de Matemática Aplicada, Pza. San Francisco s/n., Universidad de Zaragoza, 50009 Zaragoza, Spain)

  • L. Rández

    (IUMA, Departamento de Matemática Aplicada, Pza. San Francisco s/n., Universidad de Zaragoza, 50009 Zaragoza, Spain)

Abstract

The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.

Suggested Citation

  • J. M. Franco & L. Rández, 2018. "Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-18, January.
  • Handle: RePEc:wsi:ijmpcx:v:29:y:2018:i:01:n:s012918311850002x
    DOI: 10.1142/S012918311850002X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S012918311850002X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S012918311850002X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    2. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.
    3. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    4. Lee, K.C. & Nazar, R. & Senu, N. & Ahmadian, A., 2024. "A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 28-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:29:y:2018:i:01:n:s012918311850002x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.