IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v215y2024icp306-322.html
   My bibliography  Save this article

Dissipativity and synchronization of fractional-order output-coupled neural networks with multiple adaptive coupling weights

Author

Listed:
  • Zhang, Xiulan
  • Liu, YiYu
  • Qiu, Hongling
  • Liu, Heng

Abstract

Different from the majority of existing results that focus on the passivity analysis of nonlinear systems, this paper attempts to analyze the more general QSR-dissipativity of fractional-order neural networks that own output coupling and multiple coupled weights, where outer coupling weights can be adjusted online by developing an adaptation law. Using the linear matrix inequality technique, several sufficient criteria that not only guarantee the QSR-dissipativity of the network system but also achieve global synchronization even under zero input are established. Of particular significance is the proposal of a fractional Lyapunov-like lemma, which plays a crucial role in verifying the asymptotic stability of synchronization errors. Finally, a simulation example is presented to verify the plausibility of the theoretical results.

Suggested Citation

  • Zhang, Xiulan & Liu, YiYu & Qiu, Hongling & Liu, Heng, 2024. "Dissipativity and synchronization of fractional-order output-coupled neural networks with multiple adaptive coupling weights," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 306-322.
  • Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:306-322
    DOI: 10.1016/j.matcom.2023.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pratap, A. & Raja, R. & Cao, J. & Rihan, Fathalla A. & Seadawy, Aly R., 2020. "Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    3. Hu, Xiaohui & Xia, Jianwei & Wei, Yunliang & Meng, Bo & Shen, Hao, 2019. "Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    2. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Liu, Lizhi & Wang, Yinhe & Gao, Zilin, 2020. "Tracking control for the dynamic links of discrete-time complex dynamical network via state observer," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Alsaedi, Ahmed & Cao, Jinde & Ahmad, Bashir & Alshehri, Ahmed & Tan, Xuegang, 2022. "Synchronization of master-slave memristive neural networks via fuzzy output-based adaptive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    8. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    9. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    10. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    12. Luo, Lingao & Li, Lulu & Huang, Wei, 2024. "Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 491-504.
    13. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    14. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Yingkang Xie & Zhen Wang & Bo Meng, 2019. "Stability and Bifurcation of a Delayed Time-Fractional Order Business Cycle Model with a General Liquidity Preference Function and Investment Function," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    16. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    17. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Jian & Wang, Zhen, 2019. "Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    19. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    20. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:306-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.