IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp758-773.html
   My bibliography  Save this article

A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator

Author

Listed:
  • Li, Meng
  • Zhao, Yong-Liang

Abstract

The main aim of this paper is to apply the Galerkin finite element method to numerically solve the nonlinear fractional Schrödinger equation with wave operator. We first construct a fully discrete scheme combining the Crank–Nicolson method with the Galerkin finite element method. Two conserved quantities of the discrete system are shown. Meanwhile, the prior bound of the discrete solutions are proved. Then, we prove that the discrete scheme is unconditionally convergent in the senses of L2−norm and Hα/2−norm. Moreover, by the proposed iterative algorithm, some numerical examples are given to verify the theoretical results and show the effectiveness of the numerical scheme. Finally, a fast Krylov subspace solver with suitable circulant preconditioner is designed to solve above Toeplitz-like linear system. In each iterative step, this method can effectively reduce the memory requirement of the proposed iterative finite element scheme from O(M2) to O(M), and the computational complexity from O(M3) to O(MlogM), where M is the number of grid nodes. Several numerical tests are carried out to show that this fast algorithm is more practical than the traditional backslash and LU factorization methods, in terms of memory requirement and computational cost.

Suggested Citation

  • Li, Meng & Zhao, Yong-Liang, 2018. "A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 758-773.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:758-773
    DOI: 10.1016/j.amc.2018.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318304983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dongling & Xiao, Aiguo & Yang, Wei, 2015. "Maximum-norm error analysis of a difference scheme for the space fractional CNLS," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 241-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Meng & Fei, Mingfa & Wang, Nan & Huang, Chengming, 2020. "A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 404-419.
    2. Bzeih, Moussa & Arwadi, Toufic El & Wehbe, Ali & Madureira, Rodrigo L.R. & Rincon, Mauro A., 2023. "A finite element scheme for a 2D-wave equation with dynamical boundary control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 315-339.
    3. Li, Meng & Wei, Yifan & Niu, Binqian & Zhao, Yong-Liang, 2022. "Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    4. Fu, Yayun & Song, Yongzhong & Wang, Yushun, 2019. "Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 206-223.
    5. Zou, Guang-an & Wang, Bo & Sheu, Tony W.H., 2020. "On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 122-134.
    6. He, Tingxiao & Wang, Yun & Zhang, Yingnan, 2024. "A partial-integrable numerical simulation scheme of the derivative nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 630-639.
    7. Liu, Yang & Ran, Maohua, 2024. "Arbitrarily high-order explicit energy-conserving methods for the generalized nonlinear fractional Schrödinger wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 126-144.
    8. You, Xiangcheng & Xu, Hang & Sun, Qiang, 2022. "Analysis of BBM solitary wave interactions using the conserved quantities," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Almushaira, Mustafa, 2023. "An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 424-447.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    2. Ran, Yu-Hong & Wang, Jun-Gang & Wang, Dong-Ling, 2015. "On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 482-488.
    3. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    4. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    5. Fu, Yayun & Hu, Dongdong & Wang, Yushun, 2021. "High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 238-255.
    6. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    7. Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
    8. Almushaira, Mustafa, 2023. "An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 424-447.
    9. Ding, Hengfei & Tian, Junhong, 2023. "Structure preserving fourth-order difference scheme for the nonlinear spatial fractional Schrödinger equation in two dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 1-18.
    10. Mustafa Almushaira & Fei Liu, 2020. "Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations," Partial Differential Equations and Applications, Springer, vol. 1(6), pages 1-29, December.
    11. Shaojun Chen & Yayun Fu, 2024. "Linearly Implicit Conservative Schemes with a High Order for Solving a Class of Nonlocal Wave Equations," Mathematics, MDPI, vol. 12(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:758-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.