IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp241-251.html
   My bibliography  Save this article

Maximum-norm error analysis of a difference scheme for the space fractional CNLS

Author

Listed:
  • Wang, Dongling
  • Xiao, Aiguo
  • Yang, Wei

Abstract

The difference method for the space fractional coupled nonlinear Schrödinger equations (CNLS) is studied. The fractional centered difference is used to approximate the space fractional Laplacian. This scheme conserves the discrete mass and energy. Due to the nonlocal nature of fractional Laplacian, in the classic Sobolev space, it is hard to obtain the error estimation in l∞. To overcome this difficulty, the fractional Sobolev space Hα/2 and a fractional norm equivalence in Hα/2 are introduced. Then the convergence of order O(h2+τ2) in l∞ is proved by fractional Sobolev inequality, where h is the mesh size and τ is the time step. Numerical examples are given to illustrate the theoretical results at last.

Suggested Citation

  • Wang, Dongling & Xiao, Aiguo & Yang, Wei, 2015. "Maximum-norm error analysis of a difference scheme for the space fractional CNLS," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 241-251.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:241-251
    DOI: 10.1016/j.amc.2014.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314015483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Hengfei & Tian, Junhong, 2023. "Structure preserving fourth-order difference scheme for the nonlinear spatial fractional Schrödinger equation in two dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 1-18.
    2. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    3. Fu, Yayun & Hu, Dongdong & Wang, Yushun, 2021. "High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 238-255.
    4. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    5. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    6. Shaojun Chen & Yayun Fu, 2024. "Linearly Implicit Conservative Schemes with a High Order for Solving a Class of Nonlocal Wave Equations," Mathematics, MDPI, vol. 12(15), pages 1-13, August.
    7. Mustafa Almushaira & Fei Liu, 2020. "Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations," Partial Differential Equations and Applications, Springer, vol. 1(6), pages 1-29, December.
    8. Li, Meng & Zhao, Yong-Liang, 2018. "A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 758-773.
    9. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    10. Ran, Yu-Hong & Wang, Jun-Gang & Wang, Dong-Ling, 2015. "On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 482-488.
    11. Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
    12. Almushaira, Mustafa, 2023. "An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 424-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:241-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.