IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v207y2023icp80-96.html
   My bibliography  Save this article

Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation

Author

Listed:
  • Wang, Wansheng
  • Huang, Yi

Abstract

This paper is concerned with the analytical and numerical dissipativity of the space-fractional Allen–Cahn equation, a generalization of the classic Allen–Cahn equation by replacing the local Laplacian with a nonlocal fractional Laplacian. It is first proved that the continuous dynamical system is dissipative as its local counterpart in Hα and Lq, q=2k+2 for k≥0, spaces. Then it is shown that the backward Euler method preserves the dissipativity of the underlying system, that is, the discrete-in-time dynamical system with time-step parameter τ is still dissipative in Hα and Lq spaces. The existence of the global attractor for both continuous and discrete dynamical systems are then obtained. A numerical example is given to confirm the theoretical results.

Suggested Citation

  • Wang, Wansheng & Huang, Yi, 2023. "Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 80-96.
  • Handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:80-96
    DOI: 10.1016/j.matcom.2022.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Tian Liang & Zhang, KanJian, 2015. "Impulsive fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 581-590.
    2. James W. Kirchner & Xiahong Feng & Colin Neal, 2000. "Fractal stream chemistry and its implications for contaminant transport in catchments," Nature, Nature, vol. 403(6769), pages 524-527, February.
    3. Ainsworth, Mark & Mao, Zhiping, 2017. "Well-posedness of the Cahn–Hilliard equation with fractional free energy and its Fourier Galerkin approximation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 264-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asma Alharbi & Rafik Guefaifia & Salah Boulaaras, 2020. "A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    2. Zhao, Yongqiang & Tang, Yanbin, 2024. "Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    4. Asgari, M. & Ezzati, R., 2017. "Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 290-298.
    5. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Zhang, Jingyuan, 2018. "A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 209-227.
    7. Qu Simin & Wang Tao & Bao Weimin & Shi Peng & Jiang Peng & Zhou Minmin & Yu Zhongbo, 2013. "Evaluating Infiltration Mechanisms Using Breakthrough Curve and Mean Residence Time," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4579-4590, October.
    8. Reaney, Sim M. & Lane, Stuart N. & Heathwaite, A. Louise & Dugdale, Lucy J., 2011. "Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance," Ecological Modelling, Elsevier, vol. 222(4), pages 1016-1029.
    9. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Xie, Yingying & Yin, Daopeng & Mei, Liquan, 2022. "Finite difference scheme on graded meshes to the time-fractional neutron diffusion equation with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    11. Yang, Yi & Huang, Jin, 2024. "Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    12. Kundu, Snehasis, 2018. "Suspension concentration distribution in turbulent flows: An analytical study using fractional advection–diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 135-155.
    13. Treena Basu, 2015. "A Fast O ( N log N ) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 3(4), pages 1-13, October.
    14. Taohua Liu & Xiucao Yin & Yinghao Chen & Muzhou Hou, 2023. "A Second-Order Accurate Numerical Approximation for a Two-Sided Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    15. Zhu, Lin & Liu, Nabing & Sheng, Qin, 2023. "A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    16. Lv, Yujuan & Gao, Lei & Geris, Josie & Verrot, Lucile & Peng, Xinhua, 2018. "Assessment of water sources and their contributions to streamflow by end-member mixing analysis in a subtropical mixed agricultural catchment," Agricultural Water Management, Elsevier, vol. 203(C), pages 411-422.
    17. Samer S. Ezz-Eldien & Ramy M. Hafez & Ali H. Bhrawy & Dumitru Baleanu & Ahmed A. El-Kalaawy, 2017. "New Numerical Approach for Fractional Variational Problems Using Shifted Legendre Orthonormal Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 295-320, July.
    18. An, Shujuan & Tian, Kai & Ding, Zhaodong & Jian, Yongjun, 2022. "Electroosmotic and pressure-driven slip flow of fractional viscoelastic fluids in microchannels," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    19. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    20. Hart, Rob, 2003. "Dynamic pollution control--time lags and optimal restoration of marine ecosystems," Ecological Economics, Elsevier, vol. 47(1), pages 79-93, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:80-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.