IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp135-155.html
   My bibliography  Save this article

Suspension concentration distribution in turbulent flows: An analytical study using fractional advection–diffusion equation

Author

Listed:
  • Kundu, Snehasis

Abstract

In this study vertical distribution of sediment particles in steady uniform turbulent open channel flow over erodible bed is investigated using fractional advection–diffusion equation (fADE). Unlike previous investigations on fADE to investigate the suspension distribution, in this study the modified Atangana–Baleanu–Caputo fractional derivative with a non-singular and non-local kernel is employed. The proposed fADE is solved and an analytical model for finding vertical suspension distribution is obtained. The model is validated against experimental as well as field measurements of Missouri River, Mississippi River and Rio Grande conveyance channel and is compared with the Rouse equation and other fractional model found in literature. A quantitative error analysis shows that the proposed model is able to predict the vertical distribution of particles more appropriately than previous models. The validation results shows that the fractional model can be equally applied to all size of particles with an appropriate choice of the order of the fractional derivative α. It is also found that besides particle diameter, parameter α depends on the mass density of particle and shear velocity of the flow. To predict this parameter, a multivariate regression is carried out and a relation is proposed for easy application of the model. From the results for sand and plastic particles, it is found that the parameter α is more sensitive to mass density than the particle diameter. The rationality of the dependence of α on particle and flow characteristics has been justified physically.

Suggested Citation

  • Kundu, Snehasis, 2018. "Suspension concentration distribution in turbulent flows: An analytical study using fractional advection–diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 135-155.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:135-155
    DOI: 10.1016/j.physa.2018.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304370
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Tian Liang & Zhang, KanJian, 2015. "Impulsive fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 581-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Yang & Qing Wei & Lu An, 2022. "Fractional Advection Diffusion Models for Radionuclide Migration in Multiple Barriers System of Deep Geological Repository," Mathematics, MDPI, vol. 10(14), pages 1-7, July.
    2. Baleanu, D. & Shiri, B., 2018. "Collocation methods for fractional differential equations involving non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 136-145.
    3. Xin-Hui Shao & Chong-Bo Kang, 2023. "Modified DTS Iteration Methods for Spatial Fractional Diffusion Equations," Mathematics, MDPI, vol. 11(4), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongqiang & Tang, Yanbin, 2024. "Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    3. Asgari, M. & Ezzati, R., 2017. "Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 290-298.
    4. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Zhu, Lin & Liu, Nabing & Sheng, Qin, 2023. "A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    6. Wang, Wansheng & Huang, Yi, 2023. "Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 80-96.
    7. An, Shujuan & Tian, Kai & Ding, Zhaodong & Jian, Yongjun, 2022. "Electroosmotic and pressure-driven slip flow of fractional viscoelastic fluids in microchannels," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    8. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:135-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.