IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp581-590.html
   My bibliography  Save this article

Impulsive fractional partial differential equations

Author

Listed:
  • Guo, Tian Liang
  • Zhang, KanJian

Abstract

This paper deals with Cauchy problem for a class of impulsive partial hyperbolic differential equations involving the Caputo derivative. Our first purpose is to show that the formula of solutions in cited papers are incorrect. Next, we reconsider a class of impulsive fractional partial hyperbolic differential equations and introduce a correct formula of solutions for Cauchy problem in Rn. Further, some sufficient conditions for existence of the solutions are established by applying fixed point method. At last, we consider the Cauchy problem in a Banach space via the technique of measures of noncompactness and Mönch’s fixed point theorem. Some examples are given to illustrate our results.

Suggested Citation

  • Guo, Tian Liang & Zhang, KanJian, 2015. "Impulsive fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 581-590.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:581-590
    DOI: 10.1016/j.amc.2014.05.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314008017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.05.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Shujuan & Tian, Kai & Ding, Zhaodong & Jian, Yongjun, 2022. "Electroosmotic and pressure-driven slip flow of fractional viscoelastic fluids in microchannels," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    2. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    3. Asgari, M. & Ezzati, R., 2017. "Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 290-298.
    4. Wang, Wansheng & Huang, Yi, 2023. "Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 80-96.
    5. Zhu, Lin & Liu, Nabing & Sheng, Qin, 2023. "A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    6. Kundu, Snehasis, 2018. "Suspension concentration distribution in turbulent flows: An analytical study using fractional advection–diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 135-155.
    7. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Zhao, Yongqiang & Tang, Yanbin, 2024. "Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:581-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.