IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v205y2023icp205-231.html
   My bibliography  Save this article

Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions

Author

Listed:
  • Qiao, Leijie
  • Qiu, Wenlin
  • Xu, Da

Abstract

This article proposes the fast L1 alternating direction implicit (ADI) finite difference and compact difference schemes to solve the fractional telegraph equation in three-dimensional space. The fully-discrete fast L1 ADI finite difference scheme can be established via the fast L1 formula for the approximation of mixed Caputo fractional derivatives and the central difference formula for the approximation of the spatial derivative term, then from which an ADI algorithm is designed to reduce three-dimensional problems to a series of one-dimensional problems. We add the corresponding compact operators in all directions of the space to get the fully-discrete L1 ADI compact difference scheme. Then the convergence in L2 and H1 norms of two ADI schemes is derived via energy method. Eventually, numerical experiments are carried out to verify the theoretical estimates.

Suggested Citation

  • Qiao, Leijie & Qiu, Wenlin & Xu, Da, 2023. "Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 205-231.
  • Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:205-231
    DOI: 10.1016/j.matcom.2022.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    2. Qiu, Wenlin & Chen, Hongbin & Zheng, Xuan, 2019. "An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 298-314.
    3. Saffarian, Marziyeh & Mohebbi, Akbar, 2021. "Numerical solution of two and three dimensional time fractional damped nonlinear Klein–Gordon equation using ADI spectral element method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Ziyi & Zhang, Haixiang & Yang, Xuehua, 2024. "CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    2. Luo, Man & Qiu, Wenlin & Nikan, Omid & Avazzadeh, Zakieh, 2023. "Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
    4. Behnood, Maryam & Shokri, Ali, 2022. "A Legendre spectral element method for the family of regularized long wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 239-253.
    5. Peng, Xiangyi & Xu, Da & Qiu, Wenlin, 2023. "Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 702-726.
    6. Chen, Hao & Nikan, Omid & Qiu, Wenlin & Avazzadeh, Zakieh, 2023. "Two-grid finite difference method for 1D fourth-order Sobolev-type equation with Burgers’ type nonlinearity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 248-266.
    7. Wang, Furong & Yang, Xuehua & Zhang, Haixiang & Wu, Lijiao, 2022. "A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 38-59.
    8. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Abdelkawy, M.A. & Lopes, António M. & Babatin, Mohammed M., 2020. "Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    11. Qiu, Wenlin & Xu, Da & Guo, Jing, 2021. "Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    12. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    More about this item

    Keywords

    Three-dimensional fractional telegraph equation; ADI difference/compact difference methods; Fast L1 algorithm; Convergence analysis; Numerical examples;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:205-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.