IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v199y2022icp38-59.html
   My bibliography  Save this article

A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel

Author

Listed:
  • Wang, Furong
  • Yang, Xuehua
  • Zhang, Haixiang
  • Wu, Lijiao

Abstract

The main aim of this paper is to solve the two-dimensional nonlinear fractional partial integro-differential equation (PIDE) with a weakly singular kernel by using the time two-grid finite difference (FD) algorithm. The second-order backward difference formula (BDF) and L1 scheme are used in time. The time two-grid algorithm is constructed to improve the solving efficiency of nonlinear systems. The Newton iteration is used to solve nonlinear discrete system on the coarse grid, and then we apply Lagrangian linear interpolation to attain the function value used in constructing the difference scheme on the fine grid. The second-order finite difference method (FDM) is used in space. The unconditional stability and convergence are attained for the two-grid fully discrete system. Numerical experiments show that the used CPU time for the presented two-grid numerical algorithm is lower than the general finite difference method for solving the nonlinear system.

Suggested Citation

  • Wang, Furong & Yang, Xuehua & Zhang, Haixiang & Wu, Lijiao, 2022. "A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 38-59.
  • Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:38-59
    DOI: 10.1016/j.matcom.2022.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yong-Liang & Zhu, Pei-Yong & Luo, Wei-Hua, 2018. "A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 231-248.
    2. Qiu, Wenlin & Chen, Hongbin & Zheng, Xuan, 2019. "An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 298-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Yusha & Cui, Mingrong & Zeng, Fanhai, 2024. "A time two-grid algorithm for two-dimensional nonlinear time-fractional partial integro-differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 550-569.
    2. Saleh Mousa Alzahrani & Talal Ali Alzahrani, 2024. "Enhanced Efficiency of MHD-Driven Double-Diffusive Natural Convection in Ternary Hybrid Nanofluid-Filled Quadrantal Enclosure: A Numerical Study," Mathematics, MDPI, vol. 12(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Lin & Zhao, Xi-Le & Gu, Xian-Ming & Zhao, Yong-Liang & Zheng, Yu-Bang & Huang, Ting-Zhu, 2021. "Three-dimensional fractional total variation regularized tensor optimized model for image deblurring," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    2. Chen, Hao & Nikan, Omid & Qiu, Wenlin & Avazzadeh, Zakieh, 2023. "Two-grid finite difference method for 1D fourth-order Sobolev-type equation with Burgers’ type nonlinearity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 248-266.
    3. Qiu, Wenlin & Xu, Da & Guo, Jing, 2021. "Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Omran, A.K. & Zaky, M.A. & Hendy, A.S. & Pimenov, V.G., 2022. "An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 218-239.
    5. Peng, Xiangyi & Xu, Da & Qiu, Wenlin, 2023. "Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 702-726.
    6. Qiao, Leijie & Qiu, Wenlin & Xu, Da, 2023. "Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 205-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:38-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.